K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn nào giúp mình giải đề này nhé !!! Câu 1 ( 3,0 điểm ) : a) Đơn giản biểu thức A = \(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\). b) Cho ba số nguyên dương liên tiếp x, y và z thỏa mãn \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}+\dfrac{y}{x}+\dfrac{x}{z}+\dfrac{z}{y}\)là một số nguyên. Tính giá trị của x + y + z . Câu 2 ( 4,0 điểm ) : a) Giải phương trình 3x2 + 6x - 3 = \(\sqrt{\dfrac{x+7}{3}}\). b) Giải hệ phương trình...
Đọc tiếp

Bạn nào giúp mình giải đề này nhé !!! okhihi

Câu 1 ( 3,0 điểm ) :
a) Đơn giản biểu thức A = \(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\).

b) Cho ba số nguyên dương liên tiếp x, y và z thỏa mãn

\(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}+\dfrac{y}{x}+\dfrac{x}{z}+\dfrac{z}{y}\)là một số nguyên. Tính giá trị của x + y + z .

Câu 2 ( 4,0 điểm ) :

a) Giải phương trình 3x2 + 6x - 3 = \(\sqrt{\dfrac{x+7}{3}}\).

b) Giải hệ phương trình

\(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}=\dfrac{9}{y}\\x+y-\dfrac{4}{y}=\dfrac{4x}{y^2}\end{matrix}\right.\).

u 3 ( 3,0 điểm ) :

Cho tam giác ABC vuông tại A. Đường cao AH = \(\dfrac{12a}{5}\); BC = 5a . Tính hai cạnh góc vuông theo a .

Câu 4 ( 4,0 điểm ) :

a) Tìm giá trị nhỏ nhất của \(P=x-\sqrt{x-2017}\).

b) Cho a, b,c là các số thực dương thỏa mãn a + b + c = 1

Chứng minh rằng :

\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{15}{4}\).

Câu 5 ( 4,0 điểm ) :

a) Cho ABC là một tam giác cân tại A. Gọi X, Y là các điểm lần lượt thuộc các cạnh BC và AC sao cho XY song song với AB.Gọi I là tâm đường tròn ngoại tiếp tam giác CXY và E là trung điểm của BY. Chứng minh rằng \(\widehat{AEI}=90^o\).

b) Cho tam giác đều ABC nội tiếp đường tròn (O), M là điểm trên cung nhỏ BC, MA cắt BC tại D.

Chứng minh rằng MA = MB + MC và \(\dfrac{1}{MD}=\dfrac{1}{MB}+\dfrac{1}{MC}\).

4
22 tháng 4 2017

Câu 4b/

Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-3=\dfrac{1-a}{a}+\dfrac{1-b}{b}+\dfrac{1-c}{c}=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)

\(=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)=\dfrac{a^2+b^2}{ab}+\dfrac{b^2+c^2}{bc}+\dfrac{c^2+a^2}{ac}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{a^2+b^2}{ab}+\dfrac{b^2+c^2}{bc}+\dfrac{c^2+a^2}{ac}+3\)

Đề bài trở thành:

\(=\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}+\dfrac{1}{4}\left(\dfrac{a^2+b^2}{ab}+\dfrac{b^2+c^2}{bc}+\dfrac{c^2+a^2}{ac}\right)+\dfrac{3}{4}\)

\(\ge1+1+1+\dfrac{3}{4}=\dfrac{15}{4}\)

PS: Đề thì quành tráng mà giải ra thì thấy chán ngắt.

22 tháng 4 2017

Câu 4a/ \(P=x-\sqrt{x-2017}=\left(x-2017\right)-\sqrt{x-2017}+0,25+2016,75\)

\(=\left(\sqrt{x-2017}-0,5\right)^2+2016,75\ge2016,75\)

PS: Tưởng câu này là câu khó nhất chớ. Sao có 2 bước là ra đáp án vầy :(

19 tháng 7 2017

câu 2

\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)

câu 1

\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

3 tháng 7 2021

\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)

Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)

Dấu "=" xảy ra khi x=0 (tm)

Vậy \(A_{max}=\dfrac{1}{2}\)

Bài 2:

Đk: \(x\ge3;y\ge5;z\ge4\)

Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)

Áp dụng AM-GM có:

\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)

\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)

\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)

Cộng vế với vế \(\Rightarrow VT\ge20\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)

Vậy...

3 tháng 7 2021

I miss you Được em, hoặc trực tiếp nhóm thành HĐT, một vế là tổng các bình phương, vế còn lại bằng 0

28 tháng 9 2021

Tham khảo:

Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24

30 tháng 8 2021

Đáp án chi tiếtundefined

30 tháng 8 2021

Cách số 2 undefined