mọi người ơi cần gấp nhé
1)Với x+y=1, giá trị của biểu thức x^3+y^3 +3xy bằng bao nhiêu
2)cho hình thang ABCD có góc A= góc D =90 độ, M là trung điểm của BC khi đó góc MAB…….. góc MDC
3)với x - y = 1 thì giá trị của biểu thức x^3 - y^3 - 3xy
4)nếu a + b + c = 0 và abc = -2 thì a^3 + b^3 + c^3
2, kéo dài tia Am về phía M cắt DC tại F
Do ABCD là hình thang có góc A=góc D=90 độ nên AB song song CD
=> AB cũng song song DF => góc MCF = góc MBA ( so le trong )
xét tam giác MAB và tam giác MFC có:
góc CMF= góc AMB ( đối đỉnh)
MB=MC( M là trung điểm BC)
góc ABM= góc MCF( chứng minh trên)
=> tam giác MAB= tam giác MFC ( g.c.g)
=> MA=MF
Xét ta giác ADF có DM là đương trung tuyến ứng với cạnh huyền AF => DM=AM=MF
=> tam giác ADM và tam giác MDF cân tại M => góc MAD= góc MDA= 45 độ => góc MAB = 90 độ - góc MAD và góc MDC = 90 độ - góc MDA <=> góc MAB= 45 độ và góc MDC= 45 độ => góc MAB=góc MDC
3, Tương tự như câu 1
4, a+b+c=0 => a+b=-c => (a+b)^3=-c^3 <=> a^3+3a^2b+3ab^2+b^3=-c^3 => a^3+b^3+c^3=-3a^2b-3ab^2
<=> a^3+b^3+c^3= -3ab(a+b) Mà a+b=-c nên thay vào ta có:
a^3+b^3+c^3=-3ab(-c)=3abc mà abc=-2 => a^3+b^3+c^3=-6