K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2015

2, kéo dài tia Am về phía M cắt DC tại F

Do ABCD là hình thang có góc A=góc D=90 độ nên AB song song CD

=> AB cũng song song DF => góc MCF = góc MBA ( so le trong )

xét tam giác MAB và tam giác MFC có:

góc CMF= góc AMB ( đối đỉnh)

MB=MC( M là trung điểm BC)

góc ABM= góc MCF( chứng minh trên)

=> tam giác MAB= tam giác MFC ( g.c.g)

=> MA=MF

Xét ta giác ADF có DM là đương trung tuyến ứng với cạnh huyền AF => DM=AM=MF

=> tam giác ADM và tam giác MDF cân tại M => góc MAD= góc MDA= 45 độ => góc MAB = 90 độ - góc MAD và góc MDC = 90 độ - góc MDA <=> góc MAB= 45 độ và góc MDC= 45 độ => góc MAB=góc MDC

3, Tương tự như câu 1

4, a+b+c=0 => a+b=-c => (a+b)^3=-c^3 <=> a^3+3a^2b+3ab^2+b^3=-c^3 => a^3+b^3+c^3=-3a^2b-3ab^2

<=> a^3+b^3+c^3= -3ab(a+b) Mà a+b=-c nên thay vào ta có: 

a^3+b^3+c^3=-3ab(-c)=3abc mà abc=-2 => a^3+b^3+c^3=-6