K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có

BN là đường trung tuyến 

AM là đường trung tuyến

BN cắt AM tại G

Do đó: G là trọng tâm của ΔABC

=>AG=2GM

mà AG=GG'

nên GG'=2GM

=>M là trung điểm của GG'

b: Xét tư sgiác BGCG' có 

M là trung điểm của BC

M là trung điểm của GG'

Do đó: BGCG' là hình bình hành

Suy ra: CG=BG' và CG//BG'

6 tháng 9 2021

ko spam!

12 tháng 5 2021

A B C M G N D

a) Xét \(\Delta ABC\) vuông tại A có: \(BC^2=AB^2+AC^2\)  (định lí Pytago)

\(\Rightarrow BC^2=225\Rightarrow BC=\sqrt{225}=15\left(cm\right)\)

Vậy \(BC=15cm\).

b) Xét \(\Delta ABC\) vuông tại A có AM là đường trung truyến

\(\Rightarrow AM=\frac{1}{2}BC\) (định lí)

\(\Rightarrow AM=\frac{1}{2}.15=7,5\)

Ta có: 2 đường trung truyến AM và BN cắt nhau tại G

\(\Rightarrow\)G là trọng tâm của \(\Delta ABC\)

\(\Rightarrow AG=\frac{2}{3}AM=\frac{2}{3}.7,5=5\left(cm\right)\)

Vậy \(AG=5cm\).

c) Xét \(\Delta ABN\) và \(\Delta CDN\) có:

BN = DN (gt)

\(\widehat{ANB}=\widehat{CND}\) (2 góc đối đỉnh)

AN = CN (vì N là trung điểm của AC)

\(\Rightarrow\Delta ABN=\Delta CDN\left(c.g.c\right)\)   (đpcm)

17 tháng 9 2023

a) G là giao điểm của hai đường trung tuyến AM và BN nên G là trọng tâm tam giác ABC.

Suy ra: \(AG = 2GM\).  Mà trên tia đối của tia MA lấy điểm D sao cho MD = MG nên \(GD = 2GM\).

Vậy GA = GD (= 2GM).

b) Xét hai tam giác MBG và MCD có:

     MB = MC (M là trung điểm cạnh BC)

     \(\widehat {GMB} = \widehat {DMC}\)(đối đỉnh)

     GM = GD.

Vậy \(\Delta MBG = \Delta MCD\)(c.g.c).

c) \(\Delta MBG = \Delta MCD\) nên BG = CD (2 cạnh tương ứng).

Mà G là trọng tâm tam giác ABC nên \(BG = 2GN\). Mà BG = CD nên \(CD = 2GN\).

c: Xét tứ giác ABFE có

G là trung điểm chung của AF và BE

=>ABFE là hình bình hành

=>EF=AB

Xét tứ giác AGCE có

N là trung điểm chung của AC và GE

=>AGCE là hình bình hành

=>AG//CE

=>CE//AF

Xét tứ giác AECF có EC//AF

nên AECF là hình thang

Để AECF là hình thang cân thì AC=EF

mà EF=AB

nên AC=AB

c: Xét tứ giác ABFE có

G là trung điểm chung của AF và BE

=>ABFE là hình bình hành

=>EF=AB

Xét tứ giác AGCE có

N là trung điểm chung của AC và GE

=>AGCE là hình bình hành

=>AG//CE

=>CE//AF

Xét tứ giác AECF có EC//AF

nên AECF là hình thang

Để AECF là hình thang cân thì AC=EF

mà EF=AB

nên AC=AB

Xét ΔANG và ΔCND có 

\(\widehat{GAN}=\widehat{DCN}\)

NA=NC

\(\widehat{ANG}=\widehat{CND}\)

Do đó: ΔANG=ΔCND

Suy ra: NG=ND

Xét ΔBAC có 

BN là đường trung tuyến ứng với cạnh huyền AC

AM là đường trung tuyến ứng với cạnh huyền BC

BN cắt AM tại G

Do đó: G là trọng tâm của ΔBAC

Suy ra: \(BG=\dfrac{2}{3}BN\)

\(\Leftrightarrow NG=ND=\dfrac{1}{3}BN\)

\(\Leftrightarrow BG=GD\)

hay B và D đối xứng nhau qua G