- Giải phương trình sau:\(\sqrt{x+3}-\sqrt{7-x}=\sqrt{2-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. ĐKXĐ: $x\geq \frac{-3}{5}$
PT $\Leftrightarrow 5x+3=3-\sqrt{2}$
$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$
2. ĐKXĐ: $x\geq \sqrt{7}$
PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$
$\Leftrightarrow x-49=4$
$\Leftrightarrow x=53$ (thỏa mãn)
Đk: `1 <=x <=7`.
Đặt `sqrt(7-x) = a, sqrt(x-1) = b`.
Phương trình trở thành: `b^2+1 + 2a = 2b + ab + 1`.
`<=> b^2 + 2a = 2b + ab.`
`<=> b(b-2) = a(b-2)`
`<=> (b-a)(b-2) = 0`
`<=> a =b` hoặc `b = 2.`
`@ a = b => 7 - x = x - 1`
`<=> 8 = 2x <=> x = 4`.
`@ b = 2 => sqrt(x-1) = 2`
`<=> x - 1 = 4`
`<=> x = 5`.
Vậy `x = 4` hoặc `x = 5`.
\(\text{ĐKXĐ:}1\le x\le7\)
PT đã cho tương đương với:
\(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{x-1}.\sqrt{7-x}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{4;5\right\}\)
ĐK
\(\left\{{}\begin{matrix}x+3\ge0\\7-x\ge0\\2x-8\ge0\end{matrix}\right.\)
Giải hệ bất PT trên được ĐK tổng hợp là \(4\le x\le7\)
Bình phương 2 vế PT
\(x+3+7-x-2\sqrt{\left(x+3\right)\left(7-x\right)}=2x-8\)
\(\Leftrightarrow2\sqrt{\left(x+3\right)\left(7-x\right)}=18-2x\)
BP 3 vế PT
\(4\left(x+3\right)\left(7-x\right)=324+4x^2-72x\)
\(\Leftrightarrow28x-4x^2+84-12x=324+4x^2-72x\)
\(\Leftrightarrow8x^2-88x+240=0\Leftrightarrow x^2-11x+30=0\)
Giải PT bậc 2 rồi đối chiếu với đk, bạn tự làm nốt nhé
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
a) đkxđ \(x\ge1\)
pt đã cho \(\Leftrightarrow\left(\sqrt{2x-1}-3\right)+\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\dfrac{2x-10}{\sqrt{2x-1}+3}+\dfrac{x-5}{\sqrt{x-1}+2}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\dfrac{2}{\sqrt{2x-1}+3}+\dfrac{1}{\sqrt{x-1}+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(nhận\right)\\\dfrac{2}{\sqrt{2x-1}+3}+\dfrac{1}{\sqrt{x-1}+3}=0\end{matrix}\right.\)
Hiển nhiên pt thứ 2 vô nghiệm vì \(VT>0\) với mọi \(x\ge1\). Do đó pt đã cho có nghiệm duy nhất là \(x=5\)
b) đkxđ: \(x\ge-3\)
Để ý rằng \(x^2+2x+7=\left(x^2+1\right)+\left(2x+6\right)=\left(x^2+1\right)+2\left(x+3\right)\) nên nếu ta đặt \(\sqrt{x^2+1}=u\left(u\ge1\right)\) và \(\sqrt{x+3}=v\left(v\ge0\right)\) thì pt đã chot rở thành:
\(u^2+2v^2=3uv\)
\(\Leftrightarrow\left(u-v\right)\left(u-2v\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}u=v\\u=2v\end{matrix}\right.\)
Nếu \(u=v\) thì \(\sqrt{x^2+1}=\sqrt{x+3}\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+1=x+3\end{matrix}\right.\)
Mà \(x^2+1=x+3\) \(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\) (nhận)
Nếu \(u=2v\) thì \(\sqrt{x^2+1}=2\sqrt{x+3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+1=4x+12\end{matrix}\right.\)
mà \(x^2+1=4x+12\)\(\Leftrightarrow x^2-4x-11=0\)
\(\Leftrightarrow x=2\pm\sqrt{15}\) (nhận)
Vậy pt đã cho có tập nghiệm \(S=\left\{2;-1;2\pm\sqrt{15}\right\}\)
a) \(\sqrt{2x-1}+\sqrt{x-1}=5\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\left(\sqrt{2x-1}+\sqrt{x-1}\right)^2=5^2\)
\(\Leftrightarrow2x-1+x-1+2\sqrt{\left(2x-1\right)\left(x-1\right)}=25\)
\(\Leftrightarrow3x-2+2\sqrt{\left(2x-1\right)\left(x-1\right)}=25\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)\left(x-1\right)}=\dfrac{27-3x}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{27-3x}{2}\ge0\\\left(2x-1\right)\left(x-1\right)=\left(\dfrac{27-3x}{2}\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}27-3x\ge0\\2x^2-2x-x+1=\dfrac{729-162x+9x^2}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x\le27\\8x^2-12x+4=9x^2-162x+729\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x^2-150x+725=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\\left[{}\begin{matrix}x-5=0\\x-145=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\\left[{}\begin{matrix}x=5\left(tm\right)\\x=145\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=5\)
ĐK:\(x\ge\dfrac{5}{2}\)
Ta có:\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
\(\Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=7.2\)
\(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+6}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
\(\Leftrightarrow\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)
\(\Leftrightarrow2\sqrt{2x-5}=10\)
\(\Leftrightarrow\sqrt{2x-5}=5\)
\(\Leftrightarrow2x-5=25\Leftrightarrow2x=30\Leftrightarrow x=15\left(tm\right)\)
ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)
\(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+3}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
\(\Leftrightarrow2.\sqrt{2x-5}+4=14\)
\(\Leftrightarrow\sqrt{2x-5}=5\)
\(\Leftrightarrow x=15\)
1. 3x( x - 2 ) - ( x - 2 ) = 0
<=> ( x-2).(3x-1) = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)
2. x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )
<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0
(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )
3 \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)
\(1. 3x^2 - 7x +2=0\)
=>\(Δ=(-7)^2 - 4.3.2\)
\(= 49-24 = 25\)
Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:
\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)
\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)
\(ĐKXĐ:-3\le x\le2\)
\(\sqrt{x+3}-\sqrt{7-x}=\sqrt{2-x}\)
\(x+3-7+x-2\sqrt{\left(x+3\right)\left(7-x\right)}=2-x\)
\(2x-4-2\sqrt{7x+21-x^2-3x}=2-x\)
\(2\sqrt{-x^2+4x+21}=6-3x\)
\(4\left(-x^2+4x+21\right)=36-36x+9x^2\)
\(-4x^2+16x+21=9x^2-36x+36\)
\(13x^2-52x+15=0\)
\(\sqrt{\Delta}=\sqrt{\left(-52\right)^2-4.13.15}=2\sqrt{481}\)
\(\orbr{\begin{cases}x=\frac{52+2\sqrt{481}}{26}=\frac{26+\sqrt{481}}{13}\left(KTM\right)\\x=\frac{52-2\sqrt{481}}{26}=\frac{26-\sqrt{481}}{13}\left(TM\right)\end{cases}}\)
ĐK : \(\hept{\begin{cases}\sqrt{x+3}\ge0\\\sqrt{7-x}\ge0\\\sqrt{2-x}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\le7\\x\le2\end{cases}}\Leftrightarrow-3\le x\le2\)
\(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{5}\right)-\left(\sqrt{7-x}-\sqrt{5}\right)-\sqrt{2-x}=0\)
\(\Leftrightarrow\frac{x+3-5}{\sqrt{x+3}+5}-\frac{7-x-5}{\sqrt{7-x}+5}-\sqrt{2-x}=0\)
\(\Leftrightarrow-\frac{2-x}{\sqrt{x+3}+5}-\frac{2-x}{\sqrt{7-x}+5}-\sqrt{2-x}=0\)
\(\Leftrightarrow-\sqrt{2-x}\left(\frac{\sqrt{2-x}}{\sqrt{x+3}+5}+\frac{\sqrt{2-x}}{\sqrt{7-x}+5}+1\right)=0\)(1)
Dễ thấy với \(-3\le x\le2\)thì \(\frac{\sqrt{2-x}}{\sqrt{x+3}+5}+\frac{\sqrt{2-x}}{\sqrt{7-x}+5}+1>0\)
nên (1) <=> \(-\sqrt{2-x}=0\Leftrightarrow x=2\left(tm\right)\)