K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
17 tháng 8 2021

a.\(n^4+4=n^4+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2+2n+2\right)\left(n^2-2n+2\right)\)

nguyên tố nên thừa số nhỏ hơn là \(n^2-2n+2=1\Leftrightarrow\left(n-1\right)^2=0\Leftrightarrow n=1\)thỏa mãn đề bài

b. ta có :\(n^{1994}+n^{1993}+1-\left(n^2+n+1\right)=\left(n^{1992}-1\right)\left(n^2+n\right)\)

mà \(1992⋮3\Rightarrow n^{1992}-1⋮n^3-1⋮n^2+n+1\)

nên \(n^{1994}+n^{1993}+1⋮n^2+n+1\)mà nó là số nguyên tố nên

\(n^2+n+1=1\Leftrightarrow n=0\) ( Do n là số tự nhiên nên n= -1 loại bỏ đi )

5 tháng 8 2015

1) n+ 4 = (n+ 4n+ 4) - 4n= (n2 + 2)- (2n)= (n2 + 2 + 2n).(n+ 2 - 2n)

Ta có n + 2n + 2 = (n+1)+ 1 > 1 với n là số tự nhiên 

n- 2n + 2 = (n -1)2  + 1 \(\ge\) 1 với n là số tự nhiên

Để  n4 + 4 là số nguyên tố =>  thì  n4 + 4 chỉ có 2 ước là chính nó và 1 

=> n + 2n + 2  = n4 + 4 và n- 2n + 2 = (n -1)2  + 1  = 1 

(n -1)2  + 1  = 1 => n - 1= 0 => n = 1

Vậy n = 1 thì nlà số nguyên tố

5 tháng 8 2015

mấy bn này toàn bình luận, trong khi đó bài mk...

1 tháng 3 2021

1) n+ 4 = (n+ 4n+ 4) - 4n= (n+ 2)- (2n)= (n2 + 2 + 2n).(n+ 2 - 2n)

Ta có n + 2n + 2 = (n+1)+ 1 > 1 với n là số tự nhiên 

n- 2n + 2 = (n -1)2  + 1  1 với n là số tự nhiên

Để  n4 + 4 là số nguyên tố =>  thì  n4 + 4 chỉ có 2 ước là chính nó và 1 

=> n + 2n + 2  = n4 + 4 và n- 2n + 2 = (n -1)2  + 1  = 1 

(n -1)2  + 1  = 1 => n - 1= 0 => n = 1

Vậy n = 1 thì nlà số nguyên tố

1 tháng 3 2021

undefined

undefined

25 tháng 7 2023

\(P=n^4+4\) là số nguyên tố

mà \(n^4\) là số nguyên tố khi \(n=1\) và \(4\) là hợp số

\(\Rightarrow n\in\left\{1;3;5;7;...2k+1\right\}\left(k\in N\right)\)

12 tháng 9 2023

n = 4

14 tháng 6 2021

số đó là 1