Cho biểu thức:
D=\(\dfrac{1}{3}\)+\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)+......+\(\dfrac{100}{3^{100}}\)\(\)+\(\dfrac{101}{3^{101}}\)
Chứng minh rằng: D < \(\dfrac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D=\(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
=>3D=1+\(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
=>3D-D=(1+\(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\))-(\(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\))
=>2D=1-\(\dfrac{1}{3^{100}}< 1\)
=>D<\(\dfrac{1}{2}\)
Vậy...
Ta có: A=1.2.3.....99.100.(\(1+\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{99}+\dfrac{1}{100}\))
\(=1.2.3...100\left[\left(1+\dfrac{1}{100}\right)+\left(\dfrac{1}{2}+\dfrac{1}{99}\right)+......+\left(\dfrac{1}{50}+\dfrac{1}{51}\right)\right]\)
=>A= 1.2...100.\(\left[\dfrac{101}{100}+\dfrac{101}{2.99}+......+\dfrac{101}{50.51}\right]\)
=1.2.....100.101\(\left[\dfrac{1}{100}+\dfrac{1}{2.99}+.....+\dfrac{1}{50.51}\right]⋮101\)
Vậy A chia hết cho 101
\(A=\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+....+\dfrac{\left(3^{99}+1\right)}{3^{99}}\)
\(A=\dfrac{4}{3}+\dfrac{10}{3^2}+\dfrac{28}{3^3}+...+\dfrac{\left(3^{99}+1\right)}{3^{99}}\)
\(A=\left(1+\dfrac{1}{3}\right)+\left(1+\dfrac{1}{3^2}\right)+\left(1+\dfrac{1}{3^3}\right)+...+\left(1+\dfrac{1}{3^{99}}\right)\)
\(A=\left(1+1+....+1\right)+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)
\(A=99+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
Gọi \(\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)là T
\(T=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
\(3T=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)
\(3T-T=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
\(2T=1-\dfrac{1}{3^{99}}\)
\(T=\left(1-\dfrac{1}{3^{99}}\right):2\)
\(T=\dfrac{1}{2}-\dfrac{1}{3^{99}\cdot2}\)
\(=>A=99+T=99+\dfrac{1}{2}-\dfrac{1}{3^{99}\cdot2}=99,5-\dfrac{1}{3^{99}\cdot2}< 100\)
Vậy A < 100
Ta có :
\(D=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+......................+\dfrac{100}{3^{100}}+\dfrac{101}{3^{101}}\)
\(3D=1+\dfrac{2}{3}+\dfrac{3}{3^2}+.....................+\dfrac{100}{3^{99}}\)
\(3D-D=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...................+\dfrac{101}{3^{101}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+..............+\dfrac{100}{3^{99}}\right)\)\(2D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...............+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
\(6D=3+1+\dfrac{1}{3}+................+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)
\(6D-2D=\left(3+1+\dfrac{1}{3}+.............+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)-\left(1+\dfrac{1}{3}+..........+\dfrac{1}{3^{99}}-\dfrac{100}{3^{99}}\right)\)\(4D=3-\dfrac{100}{3^{99}}-\dfrac{1}{3^{99}}+\dfrac{100}{3^{100}}\)
\(4D=3-\dfrac{300}{3^{100}}-\dfrac{3}{3^{100}}+\dfrac{100}{3^{100}}\)
\(4D=3-\dfrac{203}{3^{100}}< 3\)
\(\Rightarrow D< \dfrac{3}{4}\rightarrowđpcm\)
~ Chúc bn học tốt ~