\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+......+\dfrac{5}{99.101}\)
Ai pk làm giúp vs ạ!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...\dfrac{2}{99.101}\)
=\(2.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\right)\)
=\(2.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
= \(2.\left(\dfrac{1}{1}-\dfrac{1}{101}\right)\)
=\(2.\dfrac{100}{101}\)
=\(\dfrac{200}{101}\)
A=2.(1/1.3 + 1/3.5 + 1/5.7 +.......+1/99.101)
=2.(1/1 + 1/3 + 1/5 + 1/5 + 1/7 +...+1/99 + 1/101)
=2.(1-1/101)
=2.(101/101-1/101)
=2.100/101
200/101
B=2.(1/1.3+1/3.5+1/3.1+....+1/99.101)
=2.(1/1+1/3+1/3+1/5+1/3+1/7+....+1/99+1/101)
=2.(1/1+1/101)
=2.(101/101+1/101)
=2.102/101
=204/101
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)
\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{99\cdot101}\\ =\dfrac{5}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{5}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\dfrac{100}{101}\\ =\dfrac{250}{101}\)
\(a,\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
`5/(1.3)+5/(3.5)+....+5/(99.101)`
`=5/2(2/(1.3)+2/(3.5)+....+2/(99.101))`
`=5/2(1-1/3+1/3-1/5+...+1/99-1/101)`
`=5/2(1-1/101)`
`=5/2*100/101`
`=250/101`
Ta có: \(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+...+\dfrac{5}{99\cdot101}\)
\(=\dfrac{5}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}\cdot\dfrac{100}{101}\)
\(=\dfrac{250}{101}\)
\(M=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{3}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}=\frac{3}{4}\) \(\frac{3}{4}\) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=2-\frac{2}{101}=\frac{200}{101}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(B=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(B=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(B=2.\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(B=2.\frac{100}{101}=\frac{200}{101}\)
a, \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}=\dfrac{100}{101}\)
b, \(\dfrac{5}{1.3}+\dfrac{5}{3.5}+...+\dfrac{5}{99.101}\)
\(=\dfrac{5}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}.\dfrac{100}{101}=\dfrac{250}{101}\)
Vậy...
\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{201\cdot203}\)
= \(\dfrac{5}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{201\cdot203}\right)\)
= \(\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{201}-\dfrac{1}{203}\right)\)
= \(\dfrac{5}{2}\left(1-\dfrac{1}{203}\right)\)
= \(\dfrac{5}{2}\cdot\dfrac{202}{203}=\dfrac{505}{203}\)
Ta có :
\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+...+\dfrac{5}{201.203}\)
\(=\dfrac{5}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{201.203}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...+\dfrac{1}{201}-\dfrac{1}{203}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{203}\right)\)
\(=\dfrac{5}{2}.\dfrac{202}{203}\)
\(=\dfrac{505}{203}\)
Ta có :
M= \(\dfrac{3+3-3+\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{4+4-4+\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\)= \(\dfrac{3+3-3}{4+4-4}=\dfrac{3}{4}\)
b) Nhận xét thấy: \(\dfrac{2}{1.3}=1-\dfrac{1}{3};\dfrac{1}{3.5}=\dfrac{1}{3}-\dfrac{1}{5};...\)
Ta có:
B= 1-\(\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
B= 1- \(\dfrac{1}{101}\)= \(\dfrac{100}{101}\)
Vậy B= \(\dfrac{100}{101}\)
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}.\dfrac{100}{101}=\dfrac{50}{101}\)
\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+...+\dfrac{5}{99.101}\) \(=A\)
\(A=5.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.100}\right)\)
\(2A=5.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\right)\)
\(2A=5.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(2A=5.\left(1-\dfrac{1}{101}\right)\)
\(2A=5.\dfrac{100}{101}=\dfrac{500}{101}\)
\(A=\dfrac{500}{101}:2=\dfrac{250}{101}\)
ta có
\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+....+\dfrac{5}{99.101}=\dfrac{5}{2}\left[\left(\dfrac{1}{1}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+....+\left(\dfrac{1}{97}-\dfrac{1}{99}\right)+\left(\dfrac{1}{99}-\dfrac{1}{101}\right)\right]\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{5}{2}.\dfrac{100}{101}=\dfrac{250}{101}\)