TìmGTNN của
A= -x^2+3x+4
B= 2012/ x^2+4x+2013
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I don't now
sorry
...................
nha
b) \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow\)\(\left(3x-2\right)\left(3x+3\right)^2\left(3x+8\right)+144=0\)
Đặt: \(3x+3=a\)pt trở thành:
\(\left(a-5\right)a^2\left(a+5\right)+144=0\)
\(\Leftrightarrow\)\(a^4-25a^2+144=0\)
\(\Leftrightarrow\)\(\left(a-4\right)\left(a-3\right)\left(a+3\right)\left(a+4\right)=0\)
đến đây bạn tìm a rồi tính x
c) \(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)
\(\Leftrightarrow\)\(\left(4x-5\right)\left(4x-6\right)\left(4x-4\right)-72=0\)
Đặt \(4x-5=a\)pt trở thành:
\(a\left(a-1\right)\left(a+1\right)-72=0\)
\(\Leftrightarrow\)\(a^3-a-72=0\)
p/s: ktra lại đề
d) \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
\(\Leftrightarrow\)\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)=0\)
\(\Leftrightarrow\)\(\left[\left(2x^2+x-2013\right)-2\left(x^2-5x-2012\right)\right]^2=0\)
\(\Leftrightarrow\)\(\left(11x+2011\right)^2=0\)
đến đây làm nốt
C=(2x-1)(x-1)(2x^2-3x-1)+2017
=(2x^2-3x+1)(2x^2-3x-1)+2017
=(2x^2-3x)^2-1+2017
=(2x^2-3x)^2+2016>=2016
Dấu = xảy ra khi 2x^2-3x=0
=>x=0 hoặc x=3/2
D=(x-1)(x-6)(x-3)(x-4)+10
=(x^2-7x+6)(x^2-7x+12)+10
=(x^2-7x)^2+18*(x^2-7x)+72+10
=(x^2-7x+9)^2+1>=1
Dấu = xảy ra khi x^2-7x+9=0
=>\(x=\dfrac{7\pm\sqrt{13}}{2}\)
Bạn xem lại đề nhé.
a) \(A=x^2+5y^2+2xy-4x-8y+2015\)
\(A=x^2-4x+4-2y\left(x-2\right)+y^2+2011+4y^2\)
\(A=\left(x-2\right)^2-2y\left(x-2\right)+y^2+2011+4y^2\)
\(A=\left(x-2-y\right)^2+4y^2+2011\)
Vì \(\left(x-y-2\right)^2\ge0;4y^2\ge0\)
\(\Rightarrow A_{min}=2011\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}x-y-2=0\\4y^2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
B=\(\left(\dfrac{2012}{x^2}\right)+4x+2013\) hay B=\(\left(\dfrac{2012}{x}\right)^2+4x+2013\) vậy bn
A=\(\left(-x\right)^2+3x+4=x^2+3x+4\)
=\(x^2+3x+2,25+1,75=x^2+1,5x+1,5^2+1,75\)
=\(\left(x+1,5\right)^2+1,75\)
Thấy\(\left(x+1,5\right)^2\ge0\Rightarrow\left(x+1,5\right)^2+1,75\ge1,75\) hay \(A\ge1,75\)
Vậy GTNN của A là 1,75 khi x=-1,5