K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2015

ĐK-1<=x ;y <= 3 

(+)  x < y 

=> \(\sqrt{x+1}+\sqrt{3-y}\sqrt{y+1}+\sqrt{3-x}=m\)

=> vô lí 

(+)  với  x = y 

=> \(\sqrt{x+1}+\sqrt{3-y}=\sqrt{y+1}+\sqrt{3-x}=m\left(TM\right)\)

Thay x = y vào pt (1) ta có :

\(\sqrt{x+1}+\sqrt{3-x}=m\)

đến đây thì chịu 

27 tháng 9 2015

Ngọc Vĩ vk ck thì đừng khách sáo -_- 

15 tháng 8 2018

đây là toán lớp 1 hả

15 tháng 8 2018

thế này thì 5 năm sau chắc hs lp 1 cng ko nghĩ ra mất

12 tháng 4 2021

ĐKXĐ : \(0\le x,y\le1\)

Ta có : 

 \(\sqrt{x}+\sqrt{1-y}=m+1;\sqrt{y}+\sqrt{1-x}=m+1\\ \Rightarrow\sqrt{x}+\sqrt{1-y}=\sqrt{y}+\sqrt{1-x}\Rightarrow\sqrt{x}-\sqrt{y}=\sqrt{1-x}-\sqrt{1-y}\)

 \(TH1:\ 1\ge x>y\ge0\Rightarrow\sqrt{x}>\sqrt{y};\sqrt{1-x}< \sqrt{1-y}\\ \Rightarrow\sqrt{x}-\sqrt{y}>0;\sqrt{1-x}-\sqrt{1-y}< 0\\ \Rightarrow\sqrt{x}-\sqrt{y}>\sqrt{1-x}-\sqrt{1-y}\left(VL\right)\)

\(TH2:\ 1\ge y>x\ge0. Tương\ tự:vôlý\)

TH3: x=y. Khi đó hệ phương trình trở thành

\(\sqrt{x}+\sqrt{1-x}=m+1\)

Áp dụng bất đẳng thức \(\sqrt{A+B}\le\sqrt{A}+\sqrt{B}\le\sqrt{2\left(A+B\right)}\) ta có:

\(1\le m+1\le\sqrt{2}\Leftrightarrow0\le m\le\sqrt{2}-1\)

12 tháng 4 2021

Sorry mình làm sai rồi nha. Đợi mk làm lại nhé

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải: ĐK: $x,y\geq 2$
HPT \(\Rightarrow \sqrt{x+1}-\sqrt{y+1}+(\sqrt{y-2}-\sqrt{x-2})=0\)

\(\Leftrightarrow (x-y).\left[\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{y-2}+\sqrt{x-2}}\right]=0\)

\(\Leftrightarrow x-y=0\) (do dễ thấy biểu thức trong ngoặc vuông luôn âm)

\(\Leftrightarrow x=y\)

Khi đó: $\sqrt{x+1}+\sqrt{x-2}=\sqrt{m}$
$\Leftrightarrow 2x-1+2\sqrt{(x+1)(x-2)}=m$

Để hpt có nghiệm thì pt trên có nghiệm 

$\Leftrightarrow m\geq \min (2x-1+2\sqrt{(x+1)(x-2)})$

$\Leftrightarrow m\geq 2.2-1+2.0=3$

Vậy $m\geq 3$

26 tháng 8 2021

Chị Akai Haruma ơi

14 tháng 5 2019

\(\hept{\begin{cases}\sqrt{x+1}+\sqrt{9-y}=m\\\sqrt{y+1}+\sqrt{9-x}=m\end{cases}}\)

<=>\(\hept{\begin{cases}\sqrt{x+1}+\sqrt{9-y}=m\\\sqrt{y+1}+\sqrt{9-x}=\sqrt{x+1}+\sqrt{9-y}\left(=m\right)\end{cases}}\)

<=>\(\hept{\begin{cases}\sqrt{x+1}+\sqrt{9-y}=m\\y+1+9-x+2\sqrt{\left(y+1\right).\left(9-x\right)}=x+1+9-y+2\sqrt{\left(x+1\right).\left(9-y\right)}\end{cases}}\)

<=>\(\hept{\begin{cases}\sqrt{x+1}+\sqrt{9-y}=m\\2\sqrt{\left(y+1\right).\left(9-x\right)}=2\sqrt{\left(x+1\right).\left(9-y\right)}\end{cases}}\)

<=>\(\hept{\begin{cases}\sqrt{x+1}+\sqrt{9-y}=m\\\sqrt{9y-x+9-xy}=\sqrt{9x-y+9-xy}\end{cases}}\)

<=>\(\hept{\begin{cases}\sqrt{x+1}+\sqrt{9-y}=m\\9y-x+9-xy=9x-y+9-xy\end{cases}}\)

<=>\(\hept{\begin{cases}\sqrt{x+1}+\sqrt{9-y}=m\\10x-10y=0\end{cases}}\)

<=>\(\hept{\begin{cases}\sqrt{x+1}+\sqrt{9-y}=m\\x=y\end{cases}}\)

<=>\(\hept{\begin{cases}\sqrt{x+1}+\sqrt{9-x}=m\\x=y\end{cases}}\)

<=>\(\hept{\begin{cases}x+1+9-x+2\sqrt{\left(x+1\right).\left(9-x\right)}=m^2\\x=y\end{cases}}\)

<=>\(\hept{\begin{cases}2\sqrt{\left(x+1\right).\left(9-x\right)}=m^2-10\\x=y\end{cases}}\)

<=>\(\hept{\begin{cases}4\left(-x^2+8x+9\right)=m^4-20m^2+100\\x=y\end{cases}}\)

<=>\(\hept{\begin{cases}-4x^2+32x+36=m^4-20m^2+100\\x=y\end{cases}}\)

<=>\(\hept{\begin{cases}-4x^2+32x-m^4+20m^2-64=0\left(1\right)\\x=y\end{cases}}\)

Xét (1)

-4x2+32x-m4+20m2-64=0

tính delta rồi xét trường hợp nghiệm duy nhất là ra

30 tháng 4 2020

\(\hept{\begin{cases}m=\sqrt{x+1}+\sqrt{6-y}\left(1\right)\\m=\sqrt{6-x}-\sqrt{1+y}\left(2\right)\end{cases}}\)

ĐKXĐ : \(-1\le x\le6\)\(-1\le y\le6\)

( 1 ) - ( 2 ) , ta được :

\(\sqrt{x+1}-\sqrt{6-x}+\sqrt{6-y}+\sqrt{1+y}=0\)

\(\Leftrightarrow\sqrt{6-x}-\sqrt{x+1}=\sqrt{6-y}+\sqrt{1+y}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{6-x}\ge\sqrt{x+1}\\6-x-2\sqrt{\left(6-x\right)\left(x+1\right)}+x+1=6-y+2\sqrt{\left(6-y\right)\left(y+1\right)}+y+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le\frac{5}{2}\\-\sqrt{\left(6-x\right)\left(x+1\right)}=\sqrt{\left(6-y\right)\left(y+1\right)}\end{cases}}\)

Ta thấy VP \(\le\)0 ; VT \(\ge\)0 nên VT = VP = 0

\(\Rightarrow\orbr{\begin{cases}x=-1;y=-1\\x=-1;y=6\end{cases}}\)

với x = y = -1 thì m = \(\sqrt{7}\)

với x = -1 ; y = 6 thì m = 0

Vậy m = \(\sqrt{7}\)hoặc m = 0 thì hệ có nghiệm duy nhất

NV
13 tháng 12 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{7x+y}=a\ge0\\\sqrt{x+y}=b\ge0\end{matrix}\right.\) \(\Rightarrow x-y=\dfrac{a^2-4b^2}{3}\)

Hệ trở thành:

\(\left\{{}\begin{matrix}a+b=6\\b+\dfrac{a^2-4b^2}{3}=m\end{matrix}\right.\)

\(\Rightarrow6-a+\dfrac{a^2-4\left(6-a\right)^2}{3}=m\)

\(\Leftrightarrow-a^2+15a-42=m\)

Với \(0\le a\le6\Rightarrow-42\le-a^2+15a-42\le12\)

\(\Rightarrow-42\le m\le12\)