K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
18 tháng 8 2021

dễ thấy x phải là số lẻ

ta có \(x=2k+1\Rightarrow\left(2k+1\right)^2-2y^2=1\Leftrightarrow y^2=2k\left(k+1\right)\) nên k là ước của y

mà y là số nguyên tố nên k=1

nên \(\hept{\begin{cases}x=2k+1=3\\y^2=2k\left(k+1\right)=4\Rightarrow y=2\end{cases}}\)

HM
14 tháng 9 2023

Ohio final boss

 

25 tháng 3 2017

12.1=12

25 tháng 3 2017

\(x^2-2y^2=1\)

\(\Leftrightarrow x^2=2y^2+1\)

Vì \(x^2\)là số chính phương lẻ

\(\Rightarrow x^2=2y^2+1⋮1\left(mod4\right)\)mà theo đề ra y là số nguyên tố

\(\Rightarrow y=2;x=3\)

18 tháng 4 2015

Biến đổi bt tương đương : (x^2-1) / 2 = y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x > y và x phải là số lẽ. 
Từ đó đặt x = 2k + 1 (k nguyên dương); 
Biểu thức tương đương 2 * k * ( k + 1 ) = y ^ 2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

18 tháng 4 2015

Biến đổi bt tương đương : (x^2-1) / 2 = y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x > y và x phải là số lẽ. 
Từ đó đặt x = 2k + 1 (k nguyên dương); 
Biểu thức tương đương 2 * k * ( k + 1 ) = y ^ 2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

Nhớ like cho mình nha ^^

a) => 2xy +3x=y+1

=> 2xy+3x-y=1

=> x(2y+3) -  1/2 (2y+3) +3/2 =1

=> (x-1/2)(2y+3)=1-3/2= -1/2

=> (2x-1)(2y+3)=-1

ta có bảng

...........

27 tháng 2 2019

Viết pt trên thành pt bậc 2 đối với x:

\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)

(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)

\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)

Ta cần có \(\Delta\) là số chính phương.Tức là:

\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)

\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)

Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-