K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

B= 1/3+1/4>1/4+1/4=1/2

C= 1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=4/8=1/2

D= 1/9+1/10+1/11+...+1/16>1/16+1/16+...+1/16=8/16=1/2

E= 1/17+1/18+...+1/32>1/32+1/32+...1/32=16/32=1/2

vậy A=B+C+D+E>1/2+1/2+1/2+1/2=2

A>2

ĐKXĐ: \(x\notin\left\{0;-9\right\}\)

Ta có: \(\dfrac{1}{x+9}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{20x}{20x\left(x+9\right)}-\dfrac{20\left(x+9\right)}{20x\left(x+9\right)}=\dfrac{4x\left(x+9\right)+5x\left(x+9\right)}{20x\left(x+9\right)}\)

Suy ra: \(4x^2+36x+5x^2+45x=20x-20x-180\)

\(\Leftrightarrow9x^2+81x+180=0\)

\(\Leftrightarrow x^2+9x+20=0\)

\(\Leftrightarrow x^2+4x+5x+20=0\)

\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)

Vậy: S={-4;-5}

NV
27 tháng 7 2021

Đặt vế trái BĐT là P

Ta có:

\(\left(\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}\right)\left(a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow P.\left(2ab+2bc+2ca\right)\ge1\)

\(\Rightarrow P\ge\dfrac{1}{2\left(ab+bc+ca\right)}\ge\dfrac{1}{2\left(a^2+b^2+c^2\right)}=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

18 tháng 9 2023

`(-2 1/3 ) .( - (-6)/4 )`

`= - (2xx3+1)/3 . 6/4`

`= - 7/3 . 6/4`

`= -42/12`

`= -7/2`

18 tháng 9 2023

\(\left(-2\dfrac{1}{3}\right).\left(-\dfrac{-6}{4}\right)\)

\(=\left(-\dfrac{7}{3}\right).\dfrac{3}{2}=-\dfrac{7}{2}\)

16 tháng 2 2022

\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)

=>\(B=\dfrac{32}{64}+\dfrac{16}{64}+\dfrac{6}{64}+\dfrac{2}{64}+\dfrac{1}{64}\)

=>\(B=\dfrac{32+16+6+2+1}{64}\)

=>\(B=\dfrac{63}{64}\)

16 tháng 2 2022

\(\dfrac{63}{64}\)

18 tháng 11 2021

\(a,A=\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2009}+\dfrac{1}{2008}-...-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\\ A=1+\dfrac{1}{2010}=\dfrac{2011}{2010}\)

\(b,B=\left(-124\right)\left(63-37\right)+\dfrac{17}{66}\left(-66\right)=-124\cdot26+17=-3224+17=-3207\)

NV
16 tháng 1 2024

Đặt \(\dfrac{a}{b^2}=\dfrac{b^2}{c^3}=\dfrac{c^3}{a^4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=k.b^2\\b^2=k.c^3\\c^3=k.a^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k.k.c^3=k^2c^3\\c^3=k.a^4\end{matrix}\right.\)

\(\Rightarrow a=k^2.k.a^4\)

\(\Rightarrow a=k^3a^4\)

\(\Rightarrow\left(ka\right)^3=1\)

\(\Rightarrow ka=1\)

\(\Rightarrow a=\dfrac{1}{k}\) (1)

Thế vào \(c^3=k.a^4\Rightarrow c^3=k.\dfrac{1}{k^4}=\dfrac{1}{k^3}\)

\(\Rightarrow c=\dfrac{1}{k}\) (2)

Thế vào \(b^2=kc^3\Rightarrow b^2=k.\dfrac{1}{k^3}=\dfrac{1}{k^2}\)

\(\Rightarrow b=\dfrac{1}{k}\) hoặc \(b=-\dfrac{1}{k}\) (3)

(1);(2);(3) \(\Rightarrow\left[{}\begin{matrix}a=b=c\\a=c=-b\end{matrix}\right.\)

TH1: \(a=b=c\)

\(\Rightarrow P=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)=2.2.2=8\)

Th2: \(a=c=-b\)

\(\Rightarrow P=\left(1+\dfrac{-b}{b}\right)\left(1+\dfrac{b}{-b}\right)\left(1+\dfrac{-b}{-b}\right)=0.0.2=0\)

a: Thay x=-3 vào B, ta được:

\(B=\dfrac{2\cdot\left(-3\right)^2}{3\cdot\left(-3\right)+6}=\dfrac{2\cdot9}{-9+6}=\dfrac{18}{-3}=-6\)

b: \(A=\dfrac{2x^2+20+3x-6-7x-14}{\left(x+2\right)\left(x-2\right)}=\dfrac{2x^2-4x}{\left(x+2\right)\left(x-2\right)}=\dfrac{2x}{x+2}\)

\(a,\dfrac{1}{2}x=3+2\)

\(\dfrac{1}{2}x=5\)

\(x=5\div\dfrac{1}{2}\)

\(x=10\)

\(b,\dfrac{1}{4}x^2-\sqrt{36}=10\)

\(\dfrac{1}{4}x^2-6=10\)

\(\dfrac{1}{4}x^2=10+6\)

\(\dfrac{1}{4}x^2=16\)

\(x^2=16\div\dfrac{1}{4}\)

\(x^2=64\)

\(x^2=\left(8\right)^2\)

\(\Rightarrow x=8\)

25 tháng 12 2022

Em cảm ơn nhiều ạ

3 tháng 3 2023

a)

`2/3+5/2-3/4`

`=10/4-3/4+2/3`

`=7/4+2/3`

`=21/12+8/12`

`=29/12`

b)

`2/5xx1/2:1/3`

`=2/10xx3/1`

`=6/10=3/5`

c)

`2/9:2/9xx1/3`

`=2/9xx9/2xx1/3`

`=1xx1/3`

`=1/3`

3 tháng 3 2023

a, \(\dfrac{2}{3}\) + \(\dfrac{5}{2}\) - \(\dfrac{3}{4}\)

\(\dfrac{8}{12}\) + \(\dfrac{30}{12}\) - \(\dfrac{9}{12}\)

\(\dfrac{38-9}{12}\)

\(\dfrac{29}{12}\)

b, \(\dfrac{2}{5}\) x \(\dfrac{1}{2}\) : \(\dfrac{1}{3}\)

\(\dfrac{1}{5}\) x \(\dfrac{3}{1}\)

\(\dfrac{3}{5}\)

c, \(\dfrac{2}{9}\) : \(\dfrac{2}{9}\) x \(\dfrac{1}{3}\)

= 1 x \(\dfrac{1}{3}\)

\(\dfrac{1}{3}\)