Tính tổng của các đơn thức :
\(\dfrac{3}{4}xyz^2\) \(\dfrac{1}{2}xyz^2\) \(-\dfrac{1}{4}xyz^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(5xyz\)
Hệ số: 5
Phần biến: \(xyz\)
Bậc: 1+1+1=3
- \(-xyz\cdot\dfrac{2}{3}y=-\dfrac{2}{3}xy^2z\)
Hệ số: \(-\dfrac{2}{3}\)
Phần biến: \(xy^2z\)
Bậc: 1+2+1=4
- \(-2x^2\left(-\dfrac{1}{6}\right)x=\dfrac{1}{3}x^3\)
Hệ số: \(\dfrac{1}{3}\)
Biến: \(x^3\)
Bậc: 3
`A = x - 2y + xy - 3x + y^2`
Bậc: `2`.
`B = (1-1/2)xyz - x^2y + (1+1/2)xz`
`= 1/2xyz - x^2y + 3/2xz`
Bậc: `3`
a) \(2x=5y\)⇒\(x=\dfrac{5}{2}y\)⇒\(xy=\dfrac{5}{2}y^2\)
Thay \(xy=250\), ta có:
\(250=\dfrac{5}{2}y^2\)
⇒\(y^2=100\)⇒\(y=+-10\)
+) \(y=10\text{⇒}x=250:10=25\)
+) \(y=-10\text{⇒}x=250:-10=-25\)
\(a,2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=k\\ \Rightarrow x=5k;y=2k\\ xy=250\Rightarrow5k\cdot2k=250\Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=25;y=10\\x=-25;y=-10\end{matrix}\right.\\ b,\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{4}=a\Rightarrow x=3a;y=2a;z=4a\\ xyz=192\Rightarrow24a^3=192\Rightarrow a^3=8\Rightarrow a=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=4\\z=8\end{matrix}\right.\\ c,\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{-3}=q\Rightarrow x=5q;y=2q;z=-3q\\ xyz=240\Rightarrow-30q^3=240\Rightarrow q^3=-8\Rightarrow q=-2\\ \Rightarrow\left\{{}\begin{matrix}x=-10\\y=-4\\z=6\end{matrix}\right.\)
\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)
=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)
=>x+1=4k; y-2=2k; z+2=3k
=>x=4k-1; y=2k+2; z=3k-2
xyz=12
=>(4k-1)(2k+2)(3k-2)=12
=>(4k-1)(k+1)(3k-2)=6
=>(4k-1)(3k^2-2k+3k-2)=6
=>(3k^2+k-2)(4k-1)=6
=>12k^3-3k^2+4k^2-k-8k+2-6=0
=>12k^3+k^2-9k-7=0
=>
\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)
=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)
=>x+1=4k; y-2=2k; z+2=3k
=>x=4k-1; y=2k+2; z=3k-2
xyz=12
=>(4k-1)(2k+2)(3k-2)=12
=>(4k-1)(k+1)(3k-2)=6
=>(4k-1)(3k^2-2k+3k-2)=6
=>(3k^2+k-2)(4k-1)=6
=>12k^3-3k^2+4k^2-k-8k+2-6=0
=>12k^3+k^2-9k-4=0
=>k=1
=>x=4k-1=3; y=2k+2=4; z=3k-2=3-2=1
Phân thức số 2 có thật sự là $\frac{z}{y-2}$ không bạn? Bạn xem lại đề.
Tính tổng của các đơn thức: \(\dfrac{3}{4}\) xyz2; \(\dfrac{1}{2}\)xyz2; -\(\dfrac{1}{4}\)xyz2 là
\(\dfrac{3}{4}\) xyz2 + \(\dfrac{1}{2}\)xyz2 + (-\(\dfrac{1}{4}\)xyz2) = ( \(\dfrac{3}{4}+\dfrac{1}{2}-\dfrac{1}{4}\)) xyz2 = xyz2.
Hướng dẫn giải:
Tính tổng của các đơn thức: 3434 xyz2; 1212xyz2; -1414xyz2 là
3434 xyz2 + 1212xyz2 + (-1414xyz2) = ( 3434 + 1212 - 1414) xyz2 = xyz2.