Tìm MAX:
P = \(\dfrac{\sqrt{x-2016}}{x+1}+\dfrac{\sqrt{x-2017}}{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\sqrt{x-2015};b=\sqrt{y-2016};c=\sqrt{z-2017}\left(a,b,c>0\right)\)
Khi đó phương trình trở thành:
\(\dfrac{a-1}{a^2}+\dfrac{b-1}{b^2}+\dfrac{c-1}{c^2}=\dfrac{3}{4}\\ \Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{a}+\dfrac{1}{a^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{b}+\dfrac{1}{b^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{c}+\dfrac{1}{c^2}\right)=0\\ \Leftrightarrow\left(\dfrac{1}{2}-\dfrac{1}{a}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{b}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{c}\right)^2=0\\ \Leftrightarrow a=b=c=2\\ \Leftrightarrow x=2019;y=2020;z=2021\)
Tick plz
Lời giải:
Trong TH này ta thêm điều kiện $x$ là số nguyên dương.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x(x+1)}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{(x+1)-x}{x(x+1)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(=1-\frac{1}{x+1}=\frac{x}{x+1}\)
Vậy \(\frac{x}{x+1}=\frac{\sqrt{2017-x}+2016}{\sqrt{2016-x}+2017}\)
\(\Rightarrow x\sqrt{2016-x}+2017x=(x+1)\sqrt{2017-x}+2016(x+1)\)
\(\Leftrightarrow x\sqrt{2016-x}=(x+1)\sqrt{2017-x}+2016-x\)
\(\Leftrightarrow x(\sqrt{2017-x}-\sqrt{2016-x})+\sqrt{2017-x}+2016-x=0\)
\(\Leftrightarrow \frac{x}{\sqrt{2017-x}+\sqrt{2016-x}}+\sqrt{2017-x}+(2016-x)=0\)
Hiển nhiên ta thấy:
\(\frac{x}{\sqrt{2017-x}+\sqrt{2016-x}}>0\)
\(\sqrt{2017-x}\geq 0\)
\(2016-x\geq 0\)
Do đó pt trên vô nghiệm
Tức là không tìm đc $x$ thỏa mãn.
a.
\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)
c.
\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)
B = \(\dfrac{1}{\sqrt{x}+\sqrt{x+1}}+\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}+...+\dfrac{1}{\sqrt{x+2015}+\sqrt{x+2016}}\)
B = \(\dfrac{\sqrt{x}-\sqrt{x+1}}{x-x-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}+...+\dfrac{\sqrt{x+2015}-\sqrt{x+2016}}{x+2015-x-2016}\)
B = \(\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}+...+\dfrac{\sqrt{x+2015}-\sqrt{x+2016}}{-1}\)
B = \(-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-...-\sqrt{2015}+\sqrt{2016}\)
B = \(-\sqrt{x}+\sqrt{2016}\)
Khi x = 2017
B = \(-\sqrt{2017}+\sqrt{2016}=\sqrt{2016}-\sqrt{2017}\)
\(B=B_1+B_2+...+B_{2016}\)
\(B_1=\dfrac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x}+\sqrt{x+1}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}=\dfrac{\sqrt{x+1}-\sqrt{x}}{x+1-x}\)
\(B_1=\sqrt{x+1}-\sqrt{x}\)
\(B_2=\sqrt{x+2}-\sqrt{x+1}\)
\(B_3=\sqrt{x+3}-\sqrt{x+2}\)
...
\(B_{2015}=\sqrt{x+2015}-\sqrt{x+2014}\)
\(B_{2016}=\sqrt{x+2016}-\sqrt{x+2015}\)
\(B=\sqrt{x+2016}-\sqrt{x}\)
\(B\left(2017\right)=\sqrt{2017+2016}-\sqrt{2017}\)
\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\left(x\ge0,x\ne1\right)\)
\(=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right).\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
b) Ta có: \(x\ge0\Rightarrow x+\sqrt{x}+1\ge1\Rightarrow\dfrac{2}{x+\sqrt{x}+1}\le2\)
\(\Rightarrow max=2\) khi \(x=0\)
Ta có: \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
ta có:
\(P=\dfrac{\sqrt{\left(x-2016\right).2017}}{\sqrt{2017}\left(x+1\right)}+\dfrac{\sqrt{\left(x-2017\right)2016}}{\sqrt{2016}\left(x-1\right)}\)
Áp dụng BĐT cauchy:\(\sqrt{\left(x-2016\right)2017}\le\dfrac{1}{2}\left(x-2016+2017\right)=\dfrac{1}{2}\left(x+1\right)\)
\(\sqrt{\left(x-2017\right)2016}\le\dfrac{1}{2}\left(x-2017+2016\right)=\dfrac{1}{2}\left(x-1\right)\)
do đó \(P\le\dfrac{x+1}{2\sqrt{2017}\left(x+1\right)}+\dfrac{x-1}{2\sqrt{2016}\left(x-1\right)}=\dfrac{1}{2\sqrt{2017}}+\dfrac{1}{2\sqrt{2016}}\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2016=2017\\x-2017=2016\end{matrix}\right.\)\(\Rightarrow x=4033\)