Tìm số nguyên dương m và n sao cho : \(2^m-2^n=256\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2^m-2^n=256\)
\(\Leftrightarrow2^n\left(2^{m-n}-1\right)=256\)(1)
Ta có: \(2^m-2^n=256\)
\(\Leftrightarrow2^m>2^n\)
\(\Leftrightarrow m>n\)
(1) suy ra \(2^{m-n}-1\) là số lẻ
\(\Leftrightarrow2^{m-n}-1=1\)
\(\Leftrightarrow m-n=1\)
\(\Leftrightarrow2^n=256\)
hay n=8
hay m=1+n=1+8=9
Vậy: (m,n)=(9;8)
Bạn Nguyễn Lê Phước Thịnh ơi? Nhưng mik vẫn ko hiểu tại sao \(2^{m-n}-1\)là số lẻ và m>n lại suy ra được \(2^{m-n}-1=1\)?
^m-2^n=2^8
Chia cả 2 vế cho 2 mũ 8.
2^(m-8)- 2^(n-8)=1
+giả sử m<=8, ta có VT<=1-2^(n-8)<1
Suy ra m>8. Suy ra 2^(m-8) thuộc tập số tự nhiên và chia hết cho 2
+giả sử n<8, ta có 2^(n-8) kô thuộc tập số tự nhiên. Suy ra VT kô thuộc tập số tự nhiên.Suy ra VT<>1
do đó n>=8
Với n>8,m>8 suy ra VT chia hết cho 2. suy ra VT<=>1
Với n=8, VT=2^(m-8)-1=1. tương đương với m=9.
Vậy m=9, n=8
2m - 2n = 256
=> 2n.(2m-n - 1) = 256
Vì 2m-n - 1 chia 2 dư 1; 256 = 28 => 2n = 28 và 2m-n - 1 = 1
=> n = 8; 2m-n = 21
=> m - n = 1 => m = 1 + 8 = 9
Vậy m = 9; n = 8
2m - 2n = 256
=> 2n.(2m-n - 1) = 256
Vì 2m-n - 1 chia 2 dư 1; 256 = 28 => 2n = 28 và 2m-n - 1 = 1
=> n = 8; 2m-n = 21
=> m - n = 1 => m = 1 + 8 = 9
Vậy m = 9; n = 8
\(\Leftrightarrow\left(2^{m-2}\right)^n=2^8\Leftrightarrow2^{\left(m-2\right)n}=2^8\Leftrightarrow n\left(m-2\right)=8\)
vì m,n nguyên dương nên \(m-2\ge0\Rightarrow m\ge2\)do đó m-2 và n là ước của 8 nên có thể là (8,1);(4,2);(2,4)
- \(\hept{\begin{cases}m-2=8\\n=1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=10\\n=1\end{cases}}\)
- \(\hept{\begin{cases}m-2=4\\n=2\end{cases}}\Leftrightarrow\hept{\begin{cases}m=6\\n=2\end{cases}}\)
- \(\hept{\begin{cases}m-2=2\\n=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m=4\\n=4\end{cases}}\)
- việc còn lại là kết luận nghiệm
Ta có 2m - 2n > 0 => 2m > 2n => m > n
Nên (1) ( 2n(2m-n – 1) = 28
Vì m-n > 0 => 2m-n– 1 lẽ => 2m-n-1 =1 => 2m-n= 21
=> m - n =1 => m = n +1 => n = 8, m = 9
2m-2n > 0 => 2m>2n => m>n
2m-2n=256
2n(2m-n-1) = 28
* Nếu m-n =1 thì
2n(2m-n-1)=28
2n(2-1) =28
2n = 28
=> n=8
m-n = 1
m-8 = 1
m = 8+1
m=9
* Nếu m-n lớn hơn hoặc bằng 2 thì :
2m-n-1 là số lẻ lớn hơn 1 nên vế trái là thừa số nguyên tố lẻ mà vế phải (28) là thừa số nguyên tố lẻ nên mâu thuẫn
Vậy m=9 ; n=8
Ta có : 2m - 2n = 256
Đặt m = n + k (Vì 2m > 2n) (k > 0 ; k \(\inℕ\))
Khi đó 2n.2k - 2n = 256
=> 2n(2k - 1) = 256
Vì k> 0 => 2k > 0 => 2k - 1 > 0 <=> k > 1
Mà 2k chẵn với k > 0
=> 2k - 1 lẻ với k > 1 (1)
Vì 2n(2k - 1) chẵn => 2k - 1 chẵn hoặc 2k - 1 = 1
mà xét vớ (1) ta chỉ nhận được 2k - 1 = 1
=> k = 1
=> n = 9
=> m = 10
Vậy n = 9 ; m = 10
\(2^m-2^n=256=2^8\)---> Chia 2 vế cho 2n
\(\Leftrightarrow2^{m-n}-1=2^{8-n}\)
\(\Leftrightarrow2^{m-n}-2^{8-n}=1\)
\(\Leftrightarrow2^{8-n}\left(2^{m-8}-1\right)=1\)---> Vì các lũy thừa với số mũ tự nhiên của 2 không thể bé hơn 1 nên pt chỉ có nghiệm khi:
\(\hept{\begin{cases}2^{8-n}=1\\2^{m-8}-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}2^{8-n}=2^0\\2^{m-8}=2^1\end{cases}\Leftrightarrow}\hept{\begin{cases}8-n=0\\m-8=1\end{cases}\Leftrightarrow}\hept{\begin{cases}n=8\\m=9\end{cases}}}\)
\(2^m-2^n=256=2^8=>2^n\left(2^{m-n}-1\right)=2^8\left(1\right)\)
vì m khác n ,nên ta có:
+)nếu m-n=1 thì từ (1) ta có 2^n(2-1)=2^8
=>n=8;m=9
+)nếu m-n>2 thì 2^m-n -1 là 1 số lẻ lớn hơn 1 ,do đó vế trái của (1) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố,còn vế phải của (1) chỉ chứa thừa số nguyên tố 2.Mâu thuẫn
Vậy n=8;m=9 là đáp số duy nhất
2^m-2^n=2^8
Chia cả 2 vế cho 2 mũ 8.
2^(m-8)- 2^(n-8)=1
+giả sử m<=8, ta có VT<=1-2^(n-8)<1
Suy ra m>8. Suy ra 2^(m-8) thuộc tập số tự nhiên và chia hết cho 2
+giả sử n<8, ta có 2^(n-8) kô thuộc tập số tự nhiên. Suy ra VT kô thuộc tập số tự nhiên.Suy ra VT<>1
do đó n>=8
Với n>8,m>8 suy ra VT chia hết cho 2. suy ra VT<>1
Với n=8, VT=2^(m-8)-1=1. tương đương với m=9.
Vậy m=9, n=8
Ta có \(2^m-2^n=256\)
\(\Rightarrow2^m-2^n=2^8\)
\(\Rightarrow m-n=8\)
Thay \(m=n+8\)
Khi đó ta có \(2^{n+8}-2^n=256\)
\(\Rightarrow2^n.2^8-2^n=2^8\)
\(\Rightarrow2^n.\left(2^8-1\right)=2^8\)
\(\Rightarrow2^n.255=256\)
\(\Rightarrow2^n=\frac{256}{255}\)
Đề bài sai rùi -_- nếu đúng thì phải thêm dữ kiện chứ
2m-2n=2n(2m-n-1)=256=28 (1)
ta có: m\(\ne\)n.Từ đó ta có 2 trường hợp:
m-n=1 và m-n\(\ge\)2 (vì m,n>0)
a,Nếu m-n=1 thì từ (1) ta có:
2n(2-1)=28.Suy ra n=8, m=9.
b, Nếu m-n\(\ge\)2 thì 2m-n-1 là một số lẻ lớn hơn 1 nên vế trái của (1) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố.Trong khi đó vế phải của (1) là 28 chỉ chứa thừa số nguyên tố 2 nên xảy ra điều vô lý.
Vậy n=8,m=9
có vẻ hơi sao sao về bài này....