\(\sqrt{15}-1và\sqrt{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có 7 = 3 + 4 = \(\sqrt{9}+\sqrt{16}\)
mà 7 < 9 => \(\sqrt{7}< \sqrt{9}\)
15 < 16 => \(\sqrt{15}< \sqrt{16}\)
=> \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)
=> \(\sqrt{7}+\sqrt{15}< 7\)
Vậy \(\sqrt{7}+\sqrt{15}< 7\)
b) Có 21 > 20
=> \(\sqrt{21}>\sqrt{20}\)
=> \(\sqrt{21}-\sqrt{6}>\sqrt{20}-\sqrt{6}\) (1)
Lại có 5 < 6
=> \(\sqrt{5}< \sqrt{6}\)
=> \(-\sqrt{5}>-\sqrt{6}\)
=> \(\sqrt{21}-\sqrt{5}>\sqrt{21}-\sqrt{6}\) (2)
Từ (1) và (2) => \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
Vậy \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
c) Có 27 > 25 => \(\sqrt{27}>\sqrt{25}\)
6 > 4 => \(\sqrt{6}>\sqrt{4}\)
=> \(\sqrt{27}+\sqrt{6}\) > \(\sqrt{25}+\sqrt{4}\)
=> \(\sqrt{27}+\sqrt{6}\) > 5 + 2
= >\(\sqrt{27}+\sqrt{6}+1>5+2+1\)
=> \(\sqrt{27}+\sqrt{6}+1>8\)
=> \(\sqrt{27}+\sqrt{6}+1>7\) (vì 8 > 7) (1)
Lại có 49 > 48
=> \(\sqrt{49}>\sqrt{48}\)
=> 7 > \(\sqrt{48}\) (2)
Từ (1) và (2) => \(\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
Vậy \(\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)
\(7^2=49=7+42\)
mà \(15+2\sqrt{105}< 42\)
nên \(\sqrt{7}+\sqrt{15}< 7\)
b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)
\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)
mà \(2\sqrt{22}< 15+10\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
\(\sqrt{99}\sqrt{99}\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
Vậy..........
\(\dfrac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{4}\left(\sqrt{2}-\sqrt{3}\right)}\)
\(=\dfrac{\sqrt{5}}{\sqrt{4}}\)
\(=\dfrac{\sqrt{5}}{2}\)
\(\dfrac{\sqrt{6}-\sqrt{15}}{\sqrt{35}-\sqrt{14}}\)
\(=\dfrac{\sqrt{3}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}\)
\(=-\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}\)
\(=-\dfrac{\sqrt{3}}{\sqrt{7}}\)
\(=-\dfrac{\sqrt{21}}{7}\)
____________
\(\dfrac{5+\sqrt{5}}{\sqrt{10}+\sqrt{2}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}\)
\(=\dfrac{\sqrt{5}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{10}}{2}\)
\(\sqrt{15}-1< \sqrt{10}\)
cám ơn