K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay x=1 vào (P), ta được:

\(y=\dfrac{1^2}{2}=\dfrac{1}{2}\)

Thay x=1 và y=1/2 vào y=m-x, ta được:

m-1=1/2

hay m=3/2

b: Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2+x-m=0\)

\(\text{Δ}=1^2-4\cdot\dfrac{1}{2}\cdot\left(-m\right)=2m+1\)

Để (P) cắt (d) tại hai điểm phân biệt thì 2m+1>0

hay m>-1/2

c: Để (P) tiếp xúc với (d) thì 2m+1=0

hay m=-1/2

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

Lời giải:
PT hoành độ giao điểm: 
$x^2-(m-1)x-m-1=0(*)$

Để $(P)$ và $(dm)$ cắt nhau tại 1 điểm có tọa độ nguyên  thì PT $(*)$ phải có nghiệm nguyên

Điều này xảy ra khi $\Delta=(m-1)^2+4(m+1)=a^2$ với $a$ là số tự nhiên 

$\Leftrightarrow m^2+2m+5=a^2$

$\Leftrightarrow (m+1)^2+4=a^2$

$\Leftrightarrow 4=(a-m-1)(a+m+1)$

Vì $a+m+1>0$ và $a+m+1> a-m-1$ với mọi $a$ tự nhiên, $m$ nguyên dương nên:

$a+m+1=4; a-m-1=1$

$\Rightarrow m=\frac{1}{2}$ (vô lý)

Vậy không tồn tại $m$ thỏa mãn điều kiện đề bài.

25 tháng 11 2023

a: Bạn bổ sung đề đi bạn

b: thay x=-3 và y=0 vào (d), ta được:

\(-3\left(2m+1\right)-m+3=0\)

=>-6m-3-m+3=0

=>-7m=0

=>m=0

d: y=(2m+1)x-m+3

=2mx+x-m+3

=m(2x-1)+x+3

Tọa độ điểm cố định mà (1) luôn đi qua là:

\(\left\{{}\begin{matrix}2x-1=0\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3+\dfrac{1}{2}=\dfrac{7}{2}\end{matrix}\right.\)

a: Thay x=0 và y=2 vào (d), ta được: 

a=2

b: Thay x=-1 và y=0 vào (d), ta được:

\(-\left(a-2\right)+a=0\)

\(\Leftrightarrow2=0\)(vô lý)

16 tháng 11 2023

a: Thay x=0 và y=2 vào (d), ta được:

\(0\left(m-1\right)+m=2\)

=>m+0=2

=>m=2

b: Thay x=-3 vào y=0 vào (d), ta được:

\(-3\left(m-1\right)+m=0\)

=>-3m+3+m=0

=>-2m+3=0

=>-2m=-3

=>\(m=\dfrac{3}{2}\)

c: Khi m=2 thì (d): \(y=\left(2-1\right)x+2=x+2\)

Khi m=3/2 thì (d): \(y=\left(\dfrac{3}{2}-1\right)x+\dfrac{3}{2}=\dfrac{1}{2}x+\dfrac{3}{2}\)

loading...

Tọa độ giao điểm của hai đường thẳng này là nghiệm của hệ phương trình sau:

\(\left\{{}\begin{matrix}x+2=\dfrac{1}{2}x+\dfrac{3}{2}\\y=x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-\dfrac{1}{2}x=\dfrac{3}{2}-2\\y=x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{2}x=-\dfrac{1}{2}\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1+2=1\end{matrix}\right.\)