\(\frac{2\sqrt{x}-2}{\sqrt{x}+2}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\dfrac{-\left(\sqrt{x}+2\right)}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{x-4}\right)\cdot\dfrac{2\sqrt{x}-x}{\sqrt{x}-3}\)
\(=\dfrac{-x-4\sqrt{x}-4+x-4\sqrt{x}+4-4x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)
\(=\dfrac{-4x-8\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)
\(=\dfrac{4x}{\sqrt{x}-3}\)
Để P>0 thì \(\sqrt{x}-3>0\)
hay x>9
Để P<0 thì \(\sqrt{x}-3< 0\)
hay 0<x<9
Ta có: \(\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}+3}{2\sqrt{x}+1}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}\)
\(=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)
\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)
\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)
\(B=3-\sqrt{x}-\sqrt{x}+3-6\)
\(B=-2\sqrt{x}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3}{\sqrt{x}-6}\)
Ta có \(A=\left(\frac{2\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}+\frac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\)
\(=\left(\frac{4\sqrt{xy}+\left(\sqrt{x}-\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\) (Quy đồng biểu thức đầu và đổi dấu số hạng cuối)
\(=\left(\frac{4\sqrt{xy}+x-2\sqrt{xy}+y}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}=1.\)
Vậy giá trị biểu thức \(A=1.\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
ĐKXĐ: \(x>0;x\ne\left\{4;9\right\}\)
\(P=\left(\frac{-\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4x}{x-4}\right).\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(=\left(\frac{-x-4\sqrt{x}-4+x-4\sqrt{x}+4+4x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right).\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(=\left(\frac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)
\(=\frac{4x\left(\sqrt{x}-2\right)^2}{3-\sqrt{x}}\)
Hình như bạn ghi nhầm đề
a) \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)
\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
c) \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\frac{\sqrt{x^2\left(x+2\right)}}{x+2}=4x-\sqrt{8}+x=5x-\sqrt{8}\)
\((\frac{\sqrt{x}+1}{2\sqrt{x}-2}-\frac{\sqrt{x}-1}{2\sqrt{x}+2}-\frac{\sqrt{x}+1}{1-x})\div\frac{x+2\sqrt{x}}{x+\sqrt{x}}\)
\(=(\frac{\sqrt{x}+1}{2(\sqrt{x}-1)}-\frac{\sqrt{x}-1}{2(\sqrt{x}+1)}+\frac{\sqrt{x}+1}{x-1})\div\frac{\sqrt{x}(\sqrt{x}+2)}{\sqrt{x}(\sqrt{x}+1)}\)
\(=(\frac{(\sqrt{x}+1)^2+\left(\sqrt{x}-1\right)^2+2\left(x-1\right)}{2(x-1)}\div\frac{(\sqrt{x}+2)}{(\sqrt{x}+1)}\)
Khai triển ra nhé, mk làm như trên thì lâu lắm nên bn tự lm nhé
\(=\frac{2\left(3\sqrt{x}+1\right)}{2(x-1)}\times\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{(3\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+2)}\)
Bạn vt đề bài rõ ra nhé, mk RG trc rùi phần câu hỏi xem sau( P là j z?)
\(=\frac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}-2\)
\(=x-\sqrt{x}-3\)
ĐK : x >= 0
\(\frac{2\sqrt{x}-2}{\sqrt{x}+2}=0\Rightarrow2\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(tm\right)\)
\(ĐK:x\ge0\)
\(\frac{2\sqrt{x}-2}{\sqrt{x}+2}=0\Leftrightarrow2\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
HT