Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1. Dùng phương pháp tọa độ để :
a) Chứng minh hai mặt phẳng (AB'D') và (BC'D) song song
b) Tính khoảng cách giữa hai mặt phẳng đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn hệ trục tọa độ Oxyz có gốc O ≡ A;
⇒ A(0; 0; 0) ; B(1; 0; 0); C(1; 1; 0); D(0; 1; 0).
A’(0; 0; 1); B’(1; 0; 1); C’(1; 1; 1); D’(0; 1; 1).
⇒ Vectơ pháp tuyến của (AB’D’) là:
⇒ Vectơ pháp tuyến của (BC’D) là:
⇒ (AB’D’) // (BC’D).
Đáp án B
Ta có: C O = A B 2 2 = 2 . Dựng C H ⊥ C ' O (hình vẽ).
Do A B ' / / C ' D ; A D ' / / B D ⇒ A B ' D ' / / B C ' D
Khi đó d A B ' D ' ; B C ' D = d A ; C ' B D = d C ; B D C ' = C H = C O . C C ' C O 2 + C C ' 2 = 2 3 .
Ta chọn hệ trục tọa độ sao cho các đỉnh của hình lập phương có tọa độ là:
A(0; 0; 0), B(1;0; 0), D(0; 1; 0)
B’(1; 0 ; 1), D’(0; 1; 1), C’ (1; 1; 1)
Phương trình của hai mặt phẳng (AB’D’) và (BC’D) là :
x + y – z = 0 và x + y – z – 1 = 0
Ta có:
Vậy (AB’D’) // (BC’D)
Ta chọn hệ trục tọa độ sao cho các đỉnh của hình lập phương có tọa độ là:
A(0; 0; 0), B(1;0; 0), D(0; 1; 0)
B’(1; 0 ; 1), D’(0; 1; 1), C’ (1; 1; 1)
d((AB′D′),(BC′D)) = d(A,(BC′D)) = 1/ 3
Mặt phẳng (BC’D) có VTPT (1;1; -1) và qua B (1; 0;0) nên có phương trình:
1( x- 1) + 1( y – 0) - 1( z- 0)= 0 hay x + y - z - 1 = 0
Khoảng cách giữa hai mặt phẳng song song (AB’D’) và (BC’D) chính là khoảng cách từ A đến (BC’D) và bằng :
Đặt hình lập phương ABCD.A'B'C'D' vào hệ trục Oxyz sao cho O(0;0;0) ≡ A
*mp(B'D'C')//mp(A'BD) vì (B'C//A'D và D'C//A'B) nên pt của mp (B'D'C) có dạng x+y+z+D=0 (D ≠ -1)
mp(B'D'C) đi qua điểm C(1;1;0) <=>D=-2
Suy ra pt của mp(B'D'C) là: x+y+z-z=0