Trong không gian Oxyz hãy viết phương trình mặt cầu đi qua bốn điểm \(A\left(1;0;0\right);B\left(0;-2;0\right);C\left(0;0;4\right)\) và gốc tọa độ. Hãy xác định tâm và bán kính của mặt cầu đó ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình mặt cầu (S) cần tìm có dạng: x 2 + y 2 + z 2 – 2ax – 2by – 2cz + d = 0.
Vì
A ∈ (S) nên ta có: 1 – 2a + d =0 (1)
B ∈ (S) nên ta có: 4 + 4b + d = 0 (2)
C ∈ (S) nên ta có: 16 – 8c + d = 0 (3)
D ∈ (S) nên ta có: d = 0 (4)
Giải hệ 4 phương trình trên ta có: d = 0, a = 1/2, b = −1,c = 2.
Vậy mặt cầu (S) cần tìm có phương trình là: x 2 + y 2 + z 2 –x + 2y – 4z = 0
Phương trình mặt cầu (S) có thể viết dưới dạng:
Vậy mặt cầu (S) có tâm I(1/2; -1; 2) và có bán kính
Đáp án D
Phương trình tổng quát của mặt cầu (S) có dạng x 2 + y 2 + z 2 - 2ax - 2by - 2cz + d = 0 với a 2 + b 2 + c 2 - d > 0
Ta có: O(0; 0; 0) ∈ (S) ⇔ d = 0
A(-4; 0; 0) ∈ (S) ⇔ ( - 4 ) 2 + 0 2 + 0 2 - 2a.(-4) - 0 - 0 + 0 = 0 ⇔ a = -2
B(0; 2; 0) ∈ (S) ⇔ 0 2 + 2 2 + 0 2 - 0 - 2b.2 - 0 + 0 = 0 ⇔ b = 1
C(0; 0; 4) ∈ (S) ⇔ 0 2 + 0 2 + 4 2 - 0 - 0 - 2c.4 - 0 = 0 ⇔ c = 2
Vậy phương trình tổng quát của mặt cầu (S) là: x 2 + y 2 + z 2 + 4x -2y - 4z = 0
Đáp án A
Ta có I M = 2 − 1 2 + 2 − 0 2 + − 1 + 3 2 = 3 . Mặt cầu (S) có tâm I 1 ; 0 ; − 3 và bán kính R = I M = 3 nên có phương trình là x − 1 2 + y 2 + z + 3 2 = 9 .
Phương trình mặt cầu (S) cần tìm có dạng :
\(x^2+y^2+z^2-2ax-2by-2cz+d=0\)
Vì \(A\in\left(S\right)\) nên ta có : \(1-2a+d=0\left(1\right)\)
\(A\in\left(S\right)\) nên ta có : \(4+4b+d=0\left(2\right)\)