K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

Sửa đề:

\(\dfrac{x^2y}{x-1}+\dfrac{y^2z}{y-1}+\dfrac{z^2x}{z-1}=\dfrac{x^2y^2}{xy-y}+\dfrac{y^2z^2}{yz-z}+\dfrac{z^2x^2}{zx-x}\)

\(\ge\dfrac{\left(xy+yz+zx\right)^2}{xy+yz+zx-6}\)

Đặt \(t=xy+yz+zx>x+y+z=6\) thì ta có

\(\dfrac{t^2}{t-6}=24+\dfrac{t^2-24t+144}{t-6}=24+\dfrac{\left(t-12\right)^2}{t-6}\ge24\)

Vậy GTNN là 24 đạt dược khi \(x=y=z=2\)

NV
14 tháng 1 2021

\(T=\dfrac{\left(xy\right)^2}{zx+zy}+\dfrac{\left(yz\right)^2}{xy+xz}+\dfrac{\left(zx\right)^2}{yx+yz}\ge\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\sqrt[3]{\left(xyz\right)^2}=\dfrac{3}{2}\)

 

NV
29 tháng 6 2020

\(B=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\ge\frac{9}{2x+y+z+x+2y+z+x+y+2z}=\frac{9}{4\left(x+y+z\right)}\ge\frac{9}{4}.1=\frac{9}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
29 tháng 6 2020

\(A\ge\frac{9}{2x+y+2y+z+2z+x}=\frac{9}{3\left(x+y+z\right)}=\frac{9}{3.3}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\)

24 tháng 4 2023

Ta có bất đẳng thức AM-GM dạng phân thức sau: 

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow \dfrac{1}{a+b}\le\dfrac{1}{4}(\dfrac{1}{a}+\dfrac{1}{b})\)

Dấu ''='' xảy ra khi và chỉ khi a=b

Quay lại bài toán: Áp dụng bđt trên, ta có:

\(\dfrac{1}{2x+y+z}=\dfrac{1}{(x+y)+(x+z)}\le\dfrac{1}{4}(\dfrac{1}{x+y}+\dfrac{1}{x+z})\\ \le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z})=\dfrac{1}{16}(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z})\)

Tương tự:

 \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z})\)\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z})\)

Cộng 3 phân thức lại, ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{4}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})=\dfrac{1}{4}.4=1\)

Dấu ''='' xảy ra khi và chỉ khi: \(x=y=z=\dfrac{3}{4}\)

16 tháng 1 2021

Áp dụng BĐT BSC:

\(F=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)

\(=\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)

\(maxF=1\Leftrightarrow x=y=z=\dfrac{3}{4}\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+x+y+z)\geq (1+1+1+1)^2\)

\(\Rightarrow \frac{2}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{16}{2x+y+z}\)

Hoàn toàn tương tự:

\(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\geq \frac{16}{x+2y+z}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\geq \frac{16}{x+y+2z}\)

Cộng theo vế các BĐT vừa thu được:

\(\Rightarrow 4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\geq 16\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(\Rightarrow 16\geq 16\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(\Rightarrow \frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq 1\)

Ta có đpcm.

14 tháng 10 2018

Ta có :

\(\dfrac{1}{2x+y+z}=\dfrac{16}{16\left(x+x+y+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+2y+z}=\dfrac{16}{16\left(x+y+y+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}=\dfrac{16}{16\left(x+y+z+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)

Cộng từng vế của BĐT ta được :

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Vậy BĐT đã được chứng minh !