Các cậu giúp mk đề này vs nha!!! cảm ơn nhìu :>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
MA chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
ΔABC cân tại A
mà AMlà trung tuyến
nên AM vuông góc BC
b: Xét ΔAHD và ΔAHE có
AD=AE
góc DAH=góc EAH
AH chung
=>ΔAHD=ΔAHE
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
c: Xét ΔIEK và ΔICM có
góc IEK=góc ICM
IE=IC
góc EIK=góc CIM
=>ΔIEK=ΔICM
=>EK=MC
mà EK//MC
nên EKCM là hình bình hành
=>CK//EM
Mình không vẽ hình nhé
a)Ta có: BC=\(4\sqrt{2}\)
Vậy BC=\(4\sqrt{2}\)
b)Xét hai tam giác vuông ADB và ADC có:
AB=AC( giả thiết)
\(\widehat{ABD}=\widehat{ACD}\)(giả thiết)
Do đó ADB=ADC( cạnh huyền - góc nhọn)
Suy ra DB=DC( hai cạnh tương ứng)
Mà \(D\in BC\)( giả thiết)
\(\Rightarrow\)D là trung điểm của BC
Vậy D là trung điểm của BC
c)Ta có ADB=ADC( cạnh huyền - góc nhọn)( chứng minh trên)
Suy ra \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)
\(\Rightarrow\)\(\widehat{BAD}=\widehat{CAD}=\frac{\widehat{BAC}}{2}=\frac{90^0}{2}=45^0\)
Xét tam giác AED có:
\(\widehat{CAD}=45^0\)( chứng minh trên)
\(\widehat{AED}=90^0\left(DE⊥AC\right)\)
Do đó tam giác AED vuông cân tại E
Vậy tam giác AED vuông cân tại E
d) Vì D là trung điểm của BC
Suy ra BD=DC=\(\frac{4\sqrt{2}}{2}=2\sqrt{2}\)(cm)
Áp dung định lí Pi-ta-go vào tam giác ADC vuông tại D có
\(AD^2+DC^2=AC^2\)
hay \(AD^2=4^2-\left(2\sqrt{2}\right)^2\)
hay \(AD^2=16-8=8\)
\(\Rightarrow AD=\sqrt{8}\)(cm)
Vậy \(AD=\sqrt{8}\left(cm\right)\)
x : 3,5 . 1,4 = 0,6
=> x : 3,5 = \(\frac{3}{7}\)
=> x = \(\frac{3}{2}\)
~Study well~
#Seok_Jin
de j ma giup