K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2015

Ta co:1/a-1/b=1/a-b

=>b/ab-a/ab=1/a-b

=>b-a/ab=1/a-b

=>(b-a)(a-b)=ab

Mà a-b và b-a là 2 số đối nhau=>(b-a)(a-b) có gtri âm

Lại có:a.b là số dương(vì a;b là cặp số dương)

Nên ko tìm dc x thỏa mãn

Đáp án là:0

9 tháng 7 2016

điều kiện để tồn tại đẳng thức: a khác b

TH1: a>b suy ra 1/a<1/b suy ra 1/a-1/b <0 suy ra vế trái âm

 mà a>b suy ra a-b>0 suy ra 1/(a-b)>0 suy ra vế phải dương

từ đó suy ra với a>b thì k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)

th2: a<b suy ra 1/a>1/b suy ra 1/a-1/b>0 suy ra vế trái dương

 mà a<b suy ra a-b<0 suy ra 1/(a-b)<0 suy ra vế phải âm

từ đó suy ra với a<b thì k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)

vậy k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)

1/a - 1/b = 1/a-b <=> b ( a - b ) - a ( a - b ) = ab

<=> ab - b2 - a2 + ab = ab <=> a2 + b2 - ba = 0

a+b/2 > \(\sqrt{ab}\)<=> a2 + b2 + 2ab /4 \(\ge\)ab <=> a2 +b2 - ab \(\ge\)ab 

Do a,b > 0 nên ab > 0 => a2 + b2 - ab > 0 ( 2 )

Từ 1 và 2 => ko có tồn tại 2 số dương thỏa mãn đề bài

14 tháng 7 2016

1/a - 1/b = 1/a-b <=> b ( a - b ) - a ( a - b ) = ab

<=> ab - b2 - a2 + ab = ab <=> a2 + b2 - ba = 0

a+b/2 > √ab<=> a2 + b2 + 2ab /4 ab <=> a2 +b2 - ab ab 

Do a,b > 0 nên ab > 0 => a2 + b2 - ab > 0 ( 2 )

Từ 1 và 2 => ko có tồn tại 2 số dương thỏa mãn đề bài

1 tháng 8 2016

Ta có:  \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)\(\Leftrightarrow\)\(\frac{b-a}{ab}=\frac{1}{a-b}\)\(\Rightarrow\)\(\left(b-a\right).\left(a-b\right)=1.ab\)(nhân chéo) 

\(\Leftrightarrow\)\(-\left(a-b\right).\left(a-b\right)=ab\)\(\Leftrightarrow\)\(-\left(a-b\right)^2=ab\)

Lại có: \(-\left(a-b\right)^2\le0\)với mọi a;b nên ab \(\le\)0  

Vậy số cặp số dương a và b là 0 (cặp)

16 tháng 9 2015

1/a-1/b=1/a-b <=>b-a/ab=1/a-b

<=>(b-a).(a-b)=ab

Mà b-a và a-b là 2 số đối nhau -> gtrị của tích là số âm


Lại có a,b là cặp số dương

Nên ko tìm đc a,b