Chứng minh các bất đẳng thức sau :
a) \(e^x+\cos x\ge2+x-\dfrac{x^2}{2};\forall x\in\mathbb{R}\)
b) \(e^x-e^{-x}\ge2\ln\left(x+\sqrt{1+x^2}\right);\forall x\ge0\)
c) \(8\sin^2\dfrac{x}{2}+\sin2x>2x;\forall x\in\) (\(0;\pi\)]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x^2+1}{x}=\dfrac{x^2}{x}+\dfrac{1}{x}=x+\dfrac{1}{x}\)
Theo bất đẳng thức Cô - si, ta có:
\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}=2\sqrt{1}=2\)
Vậy \(\dfrac{x^2+1}{x}\ge2\)
Biến đổi tương đương:
\(\Leftrightarrow\dfrac{x^2+y^2}{xy}\ge2\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã được chứng minh
a) Ta có: \(1-\frac{\sin^2x}{1+\cot x}-\frac{\cos^2x}{1+\tan x}=1-\frac{\sin^2x}{1+\frac{\cos x}{\sin x}}-\frac{\cos^2x}{1+\frac{\sin x}{\cos x}}\) (Đk: sinx và cosx khác 0)
\(=1-\frac{\sin^3x}{\sin x+\cos x}-\frac{\cos^3x}{\cos x+\sin x}\)
\(=1-\frac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x.\cos x+\cos^2x\right)}{\sin x+\cos x}\)
\(=1-\left(\sin^2x+\cos^2x-\sin x.\cos x\right)\) (do sinx + cosx luôn khác 0)
\(=\sin x.\cos x\) ( do \(\sin^2x+\cos^2x=1\))
b) Ta có: \(\frac{\sin^2x+2\cos x-1}{2+\cos x-\cos^2x}=\frac{\left(\sin^2x-1\right)+2\cos x}{-\left(\cos x+1\right)\left(\cos x-2\right)}\) (Đk: cosx khác -1 và 2)
\(=\frac{-\cos x\left(\cos x-2\right)}{-\left(\cos x+1\right)\left(\cos x-2\right)}\)
\(=\frac{\cos x}{1+\cos x}\)
a) Ta có: 1−sin2x1+cotx −cos2x1+tanx =1−sin2x1+cosxsinx −cos2x1+sinxcosx (Đk: sinx và cosx khác 0)
=1−sin3xsinx+cosx −cos3xcosx+sinx
=1−(sinx+cosx)(sin2x−sinx.cosx+cos2x)sinx+cosx
=1−(sin2x+cos2x−sinx.cosx) (do sinx + cosx luôn khác 0)
=sinx.cosx ( do sin2x+cos2x=1)
b) Ta có: sin2x+2cosx−12+cosx−cos2x =(sin2x−1)+2cosx−(cosx+1)(cosx−2) (Đk: cosx khác -1 và 2)
=−cosx(cosx−2)−(cosx+1)(cosx−2)
=cosx1+cosx
\(a)sin^4x+cos^4x=1-2sin^2x\cdot cos^2x\)
\(\Leftrightarrow sin^4x+2sin^2x\cdot cos^2x+cos^4x=1\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2=1\)(luôn đúng)
a) \sin ^{4} x+\cos ^{4} x=\sin ^{4} x+\cos ^{4} x+2 \sin ^{2} x \cos ^{2} x-2 \sin ^{2} x \cos ^{2} xsin4x+cos4x=sin4x+cos4x+2sin2xcos2x−2sin2xcos2x
\begin{aligned}&=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x \\&=1-2 \sin ^{2} x \cos ^{2} x\end{aligned}=(sin2x+cos2x)2−2sin2xcos2x=1−2sin2xcos2x
b) \dfrac{1+\cot x}{1-\cot x}=\dfrac{1+\dfrac{1}{\tan x}}{1-\dfrac{1}{\tan x}}=\dfrac{\dfrac{\tan x+1}{\tan x}}{\dfrac{\tan x-1}{\tan x}}=\dfrac{\tan x+1}{\tan x-1}1−cotx1+cotx=1−tanx11+tanx1=tanxtanx−1tanxtanx+1=tanx−1tanx+1
c) \dfrac{\cos x+\sin x}{\cos ^{3} x}=\dfrac{1}{\cos ^{2} x}+\dfrac{\sin x}{\cos ^{3} x}=\tan ^{2} x+1+\tan x\left(\tan ^{2} x+1\right)cos3xcosx+sinx=cos2x1+cos3xsinx=tan2x+1+tanx(tan2x+1)
=\tan ^{3} x+\tan ^{2} x+\tan x+1=tan3x+tan2x+tanx+1
tam thoi cho ban dung
<=>(sinx+cosx-1)/(1-cosx+sinx+cosx-1)=(2cosx)/(sinx-cosx+1+2cosx)
<=>(sinx+cosx-1)/sinx=2cosx/(sinx+cosx+1)
x€(0;π/2)=> sinx ≠0; sinx+cosx+1≠0
<=>(sinx+cosx-1)(sinx+cosx+1)=2sinxcosx
<=>(sinx+cosx)^2-1=2sinxcosx
<=>(sin^2x+cos^2+2sinxcos)-1=2sinxcosx
<=>1+2sinxcosx-1=2sinxcosx
<=>2sinxcosx=2sinxcosx
moi bd <=>=> ban dung =>dpcm
ta có : \(0^o< x< 90^o\) \(\Rightarrow sinx-cosx+1>0\) và ta luôn có \(1-cosx>0\) \(\Rightarrow\) biểu thức trên được xác định
\(\Rightarrow\dfrac{sinx+cos-1}{1-cosx}=\dfrac{2cosx}{sinx-cos+1}\)
\(\Leftrightarrow\left(sinx+cosx-1\right)\left(sinx-cosx+1\right)=2cosx\left(1-cosx\right)\)
\(\Leftrightarrow\left(sinx+\left(cosx-1\right)\right)\left(sinx-\left(cosx-1\right)\right)=2cosx\left(1-cosx\right)\)
\(\Leftrightarrow sin^2x-\left(cosx-1\right)^2=2cosx-2cos^2x\)
\(\Leftrightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\)
\(\Leftrightarrow sin^2x-cos^2x+2cosx-sin^2x-cos^2x=2cosx-2cos^2x\)\(\Rightarrow2cosx-2cos^2x=2cosx-cos^2x\) \(\Rightarrow\left(đpcm\right)\)
\(\dfrac{sinx+cosx-1}{1-cosx}=\dfrac{2cosx}{sinx-cosx+1}\)
\(\Leftrightarrow sin^2x-\left(cosx-1\right)^2=2cosx\left(1-cosx\right)\)
\(\Leftrightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\)
\(\Leftrightarrow sin^2x+cos^2x-1=0\)
\(\Leftrightarrow1-1=0\) đúng
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(\Leftrightarrow x^2+y^2+z^2+3\ge2x+2y+2z\)
\(\Leftrightarrow x^2+y^2+z^2+3-2x-2y-2z\ge0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)
Vậy \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)