Giải các phương trình sau trên tập số phức :
a) \(3x^2+\left(2+2i\sqrt{2}\right)x-\dfrac{\left(1+i\right)^3}{1-i}=i\sqrt{8}x\)
b) \(\left(1-ix\right)^2+\left(3+2i\right)x-5=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đặc : \(x=a+bi\) với \(a;b\in R\) và \(i^2=-1\)
ta có : \(\left(1+2i\right)x-4\left(4-5i\right)=-7+3i\)
\(\Leftrightarrow\left(1+2i\right)\left(a+bi\right)-4\left(4-5i\right)=-7+3i\)
\(\Leftrightarrow a-2b+2ai+bi-16+20i=-7+3i\)
\(\Leftrightarrow\left(a-2b-16\right)+\left(2a+b+20\right)i=-7+3i\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-2b-16=-7\\2a+b+20=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a-2b=9\\2a+b=-17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b=-7\end{matrix}\right.\) vậy \(x=-5-7i\)
câu b lm tương tự nha .
a) (3 + 4i)z = (2 + 5i) – (1 – 3i) = 1 + 8i
Vậy z=1+8i3+4i=(1+8i)(3−4i)25=3525+2025i=75+45iz=1+8i3+4i=(1+8i)(3−4i)25=3525+2025i=75+45i
b) (4 + 7i)z – (5 – 2i) = 6iz ⇔ (4 + 7i)z – 6iz = 5 – 2i
⇔ (4 + i)z = 5 – 2i
⇔z=5−2i4+i=(5−2i)(4−i)17⇔z=1817−1317i
\(i.\dfrac{\left(2x+1\right)^2}{5}-\dfrac{\left(x-1\right)^2}{3}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\dfrac{4x^2+4x+1}{5}-\dfrac{x^2-2x+1}{3}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\dfrac{12x^2+12x+3}{15}-\dfrac{5x^2-10x+5}{15}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5=7x^2-14x-5\)
\(\Leftrightarrow36x=-3\)
\(\Leftrightarrow x=-\dfrac{1}{12}\)
a) Ta có (3 - 2i)z + (4 + 5i) = 7 + 3i <=> (3 - 2i)z = 7 + 3i - 4 - 5i
<=> z = <=> z = 1. Vậy z = 1.
b) Ta có (1 + 3i)z - (2 + 5i) = (2 + i)z <=> (1 + 3i)z -(2 + i)z = (2 + 5i)
<=> (1 + 3i - 2 - i)z = 2 + 5i <=> (-1 + 2i)z = 2 + 5i
z =
Vậy z =
c) Ta có + (2 - 3i) = 5 - 2i <=> = 5 - 2i - 2 + 3i
<=> z = (3 + i)(4 - 3i) <=> z = 12 + 3 + (-9 + 4)i <=> z = 15 -5i