so sánh A và B biết \(A=\dfrac{2011}{\sqrt{2012}}+\dfrac{2012}{\sqrt{2011}}vàB=\sqrt{2011}+\sqrt{2012}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\sqrt{a^{2012}+2011}+\dfrac{1}{\sqrt{a^{2012}+2011}}>=2\sqrt{\sqrt{a^{2012}+2011}\cdot\dfrac{1}{\sqrt{a^{2012}+2011}}}=2\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge2011\\y\ge2012\\z\ge2013\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-2011}\ge0\\b=\sqrt{y-2012}\ge0\\c=\sqrt{z-2013}\ge0\end{matrix}\right.\) ta có :
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}+\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}=0\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow a=b=c=2\Leftrightarrow\left\{{}\begin{matrix}x=2015\\y=2016\\z=2017\end{matrix}\right.\)
Lời giải:
Áp dụng BĐT Cô-si ngược dấu:
\(\sqrt{x-2010}=\frac{1}{2}\sqrt{4(x-2010)}\leq \frac{4+(x-2010)}{4}\)
\(\Rightarrow \sqrt{x-2010}-1\leq \frac{4+(x-2010)}{4}-1=\frac{x-2010}{4}\)
\(\Rightarrow \frac{\sqrt{x-2010}-1}{x-2010}\leq \frac{1}{4}\)
Hoàn toàn tương tự với những phân thức còn lại:
\(\Rightarrow \frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}+\frac{\sqrt{z-2012}-1}{z-2012}\leq \frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x-2010=4\\ y-2011=4\\ z-2012=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2014\\ y=2015\\ z=2016\end{matrix}\right.\)
A = \(\frac{2012-1}{\sqrt{2012}}+\frac{2011+1}{\sqrt{2011}}=\sqrt{2012}-\frac{1}{\sqrt{2012}}+\sqrt{2011}+\frac{1}{\sqrt{2011}}\)
A = \(\sqrt{2012}+\sqrt{2011}+\left(\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\right)=B+\left(\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\right)\)
Mà 2011 < 2012 nên \(\frac{1}{\sqrt{2011}}>\frac{1}{\sqrt{2012}}\Rightarrow\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}>0\)
=> A > B
Ta có \(\sqrt{a^{2012}+2011}\le\dfrac{a^{2012}+2011+1}{2}\)
\(\Leftrightarrow\dfrac{a^{2012}+2012}{\sqrt{a^{2012}+2011}}\ge\dfrac{a^{2012}+2012}{\dfrac{a^{2012}+2012}{2}}=2\)
Dấu \("="\Leftrightarrow a^{2012}+2011=1\Leftrightarrow a\in\varnothing\)
Vậy dấu \("="\) ko xảy ra
\(\Rightarrow\dfrac{a^{2012}+2012}{\sqrt{a^{2012}+2011}}>2\)
Ta có: \(\frac{2010}{2011}>\frac{2010}{2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012}\)
Nên \(\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010+2011}{2011+2012}\)\(\Rightarrow A>B\)
So sánh: \(\frac{2010}{2011}+\frac{2011}{2012}\) với \(\frac{2010+2011}{2011+2012}\)
Đặt \(\sqrt{2011}=a;\sqrt{2012}=b\)
Theo đề, ta có: \(A=\dfrac{a^2}{b}+\dfrac{b^2}{a}=\dfrac{a^3+b^3}{ab}\)
B=a+b
\(A-B=\dfrac{a^3+b^3}{ab}-\left(a+b\right)=\dfrac{a^3+b^3-a^2b-ab^2}{ab}\)
\(=\dfrac{\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)}{ab}\)
\(=\dfrac{\left(a+b\right)\left(a-b\right)^2}{ab}>0\)
=>A>B