K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

Bài 1: Tính tổng 100 số hạng đầu tiên của các dãy sau:

a) \(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{1}{1.2}\\\dfrac{1}{6}=\dfrac{1}{2.3}\\\dfrac{1}{12}=\dfrac{1}{3.4}\\...\end{matrix}\right.\)

Vậy số thứ 100 của dãy là: \(\dfrac{1}{100.101}=\dfrac{1}{10100}\)

Tổng: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

b) \(\left\{{}\begin{matrix}\dfrac{1}{6}=\dfrac{1}{\left(5.0+1\right)\left(5.1+1\right)}\\\dfrac{1}{66}=\dfrac{1}{\left(5.1+1\right)\left(5.2+1\right)}\\\dfrac{1}{176}=\dfrac{1}{\left(5.2+1\right)\left(5.3+1\right)}\\...\end{matrix}\right.\)

Vậy số thứ 100 của dãy là: \(\dfrac{1}{\left(5.99+1\right)\left(5.100+1\right)}=\dfrac{1}{248496}\)

Tổng: \(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{496.501}\)

\(=\dfrac{1}{5}\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{496.501}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{496}-\dfrac{1}{501}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{501}\right)\)

\(=\dfrac{1}{5}.\dfrac{500}{501}\)

\(=\dfrac{100}{501}\)

12 tháng 4 2017

Bài 2: Tính:

a) \(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)

\(A=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(\dfrac{1}{3}+\dfrac{1}{97}\right)+...+\left(\dfrac{1}{49}+\dfrac{1}{51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(A=\dfrac{\dfrac{100}{1.99}+\dfrac{100}{3.97}+\dfrac{100}{5.95}+...+\dfrac{100}{49.51}}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(A=\dfrac{100\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(\Rightarrow A=\dfrac{100}{2}=50\)

12 tháng 3 2018

NX : Số hạng đầu tiên có mẫu : 1 . 2 

=>  Số hạng thứ 100 có mẫu : 100 . ( 100 + 1 ) = 100 . 101 

Ta có dãy số : 

1/1 . 2 + 1/2 . 3 + 1/3 . 4 + ...+ 1/100 . 1/101

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ...+ 1/100 - 1/101

= 1 - 1/101 

= 101/101 - 1/101

= 100/101 

Vậy tổng 100 số hạng đầu tiên là 100/101 

12 tháng 3 2018

số hạng thứ 100 của dãy là \(\frac{1}{100\cdot101}\)

tổng của 100 số hạng đầu tiên của dãy :

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{100\cdot101}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

26 tháng 7 2015

Dấu "." là dấu "x" nhé, học sinh cấp 2 phải dùng dấu "." =)))

Đặt A = 2 + 6 + 12 + 20 + ..... + 10100

A = 1.2 + 2.3 + 3.4 + 4.5 + .. + 100.101

3.A = 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 + .. + 100.101.3

3.A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101. (102 - 99)

3.A = 1.2.3 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 100.101.102 - 99.100.101

Các số trên đều bị giản ước bởi các số trước còn lại 100.101.102

=> 3A = 100.101.102

=> A = 100.101.102 : 3 = 100.101.34 = 343400

26 tháng 7 2015

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...=\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...\right):2\)

Ta có: (100 - 1) x 2 + 1 = 199 

Vậy số hạng thứ 100 là: \(\frac{1}{199.201}\)

Tổng dãy trên là: \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{199.201}\right):2=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{199}-\frac{1}{201}\right):2=\left(1-\frac{1}{201}\right):2=\frac{200}{201}:2=\frac{100}{201}\)

10 tháng 7 2017

Câu 1: 

a) Số hạng thứ 100 của tổng là: 

(100-1) * 3 + 5 = 302

b) Tổng 100 số hạng đầu tiên là: 

(302 + 5) * 100 : 2 = 15350

                  Đ/S: a) 302

                         b) 15350

Câu 2:

a) Số hạng thừ 50 của tổng là: 

(50 - 1) * 5 + 7 =252

b) Tổng 50 số hạng đầu là:

(252 + 7) * 50 : 2 =6475

                   Đ/S: a) 252

                          b) 6475

10 tháng 9 2017

s=5+8+11+14+..

nhận xét :5+3=8

               8+3=11

                11+3=14

...............

vậy => dãy số trên là dãy số cách đều 3 đv

giả sử coi số hạng đứng thứ 100 của dãy là số hạng cuối cùng của dãy và là x.ta có:

(x-5):3+1=100

(x-5):3=100-1

(x-5):3=99

x-5=99x3

x-5=297

x=297+5

x=302

vậy số hạng đứng thứ 100 của dãy là: 302

b) ta có dãy :5+8+11+14+..

(302+5) x100:2=15350

cậu giải tương tự như trên nhá

công thức tính số hạng thứ n là:(số cuối -số đầu):khoảng cách +1

---------------------------------tính tổng:(sc+sđ)x số số hạng :2

12 tháng 6 2020

Giúp mình với đi các cao nhân!

28 tháng 8 2016

1. Số thứ 100 là :

           1 + ( 100 - 1 ) x 3 = 298

2.Tổng của 100 số hạng đầu tiên là :

            ( 298 + 1 ) x 100 : 2 = 14950

3. Các số 111 , 22222 không có trong dãy số

nhớ k nha

1) ta có : ( x - 1 ) : 3 + 1 = 100

             ( x - 1 ) : 3 = 99

           x - 1 = 297

      => x = 298

vậy số thứ 100 của dãy là 298

NV
10 tháng 1 2021

Ta sử dụng công thức truy hồi để tìm các số hạng tiếp theo trong dãy:

\(1;3;2;-1;-3;-2;1;3;2;-1;-3;-2...\)

Từ đó ta nhận thấy quy luật:

\(u_n=1\) nếu \(n=6k+1\)

\(u_n=3\) nếu \(n=6k+2\)

\(u_n=2\) nếu \(n=6k+3\)

\(u_n=-1\) nếu \(n=6k+4\)

\(u_n=-3\) nếu \(n=6k+5\)

\(u_n=-2\) nếu \(n=6k\)

Đồng thời:

\(u_3=u_2-u_1\)

\(u_4=u_3-u_2\)

...

\(u_{99}=u_{98}-u_{97}\)

\(u_{100}=u_{99}-u_{98}\)

Cộng vế với vế:

\(u_3+u_4+...+u_{100}=u_{99}-u_1\)

\(\Leftrightarrow u_1+u_2+...+u_{100}=u_2+u_{99}=3+u_{6.16+3}=3+2=5\)

23 tháng 7 2015

gọi dãy số 1/5,1/45,1/117,1/221,......là A

ta có:A=1/5,1/45,1/117,1/221,......

= 1/(1.5) + 1/(5.9) + 1/(9.13) + ... + 1/(397.401) = 
= (1/4)[4/(1.5) + 4/(5.9) + 4/(9.13) + ... + 4/(397.401)] = 
= (1/4)[(1 - 1/5) + (1/5 - 1/9) + (1/9 - 1/13) + ... + (1/397 - 1/401)] = 
= (1/4)(1 - 1/401)

=(1/4).400/401

=100/401

26 tháng 8 2017

1)55=4+5+6+7+8+9+10+11

26 tháng 8 2017

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31