K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

13 tháng 2 2023

Xét các trường hợp:

\(n=1\Leftrightarrow1!=1=1^2\) là số chính phương 

\(n=2\Leftrightarrow1!+2!=3\) không phải là số chính phương

\(n=3\Leftrightarrow1!+2!+3!=9=3^3\) là số chính phương 

\(n\ge4\Leftrightarrow1!+2!+3!+4!=33\) còn \(5!,6!,7!,...,n!\) đều có tận cùng là \(0\Rightarrow1!+2!+3!+...+n!\) có tận cùng là chữ số 3 nên không phải là số chính phương

Vậy \(n\in\left\{1;3\right\}\).

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

4 tháng 1 2016

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1=\left(n^2+3n+1\right)^2\)là chính phương
mà \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\) cũng là chính phương 
\(\Leftrightarrow\left(n^2+3n+1\right)^2=0\)
pt vô nghiệm

4 tháng 1 2016

ok pạn Phạm thế mạnh

27 tháng 3 2016

vì n tn nên ta xet cac TH

+, n=1 ta có 1!=1la scp( chọn)

+,n=2 ta có1!+ 2!=3ko là scp(loại)

+,n=3 ta có1!+2! 3!=9  là scp( chọn)

+,n=4 ta có 1!+2!+3!+4!=33ko là scp( loai)

+, n>=5 ta có1!+2!+3!+4!+5!+...+n!

mà n>=5 nên 5!,6!,7!,...,n! có tc là 0

1!+2!+3!+4! có tận cùg là 3

nên 1!+2!+3!+...+n! có tc là 3

mà 1scp ko có tc là 3

=> n>=5 ko tm

vậy n=1.3