giải hệ phương trình :
x2 + y2 = 6
x + y - 3xy = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ phương trình số 2 ta có
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)
lần lượt thay vào 1 ta có
\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)
vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)
Đáp án D
- Ta có :
(C1) tâm I1(0;2) và R1= 3; (C2) tâm I2( 3;-4) và R2= 3
- Nhận xét : không cắt C2
- Gọi d: ax+ by+ c= 0 là tiếp tuyến chung , thế thì : d(I1; d) = R1 và d (I2; d) = R2
- Trường hợp: a= 2b thay vào (1):
- Do đó ta có hai đường thẳng cần tìm :
- Trường hợp : thay vào :
-Có 2 đường thẳng : d3: 2x- 1 = 0 và d4: 6x + 8y -1= 0.
Có tất cả 4 tiếp tuyến chung.
a: Khi m=2 thì hệ sẽ là;
2x-y=4 và x-2y=3
=>x=5/3 và y=-2/3
b: mx-y=2m và x-my=m+1
=>x=my+m+1 và m(my+m+1)-y=2m
=>m^2y+m^2+m-y-2m=0
=>y(m^2-1)=-m^2+m
Để phương trình có nghiệm duy nhất thì m^2-1<>0
=>m<>1; m<>-1
=>y=(-m^2+m)/(m^2-1)=(-m)/m+1
x=my+m+1
\(=\dfrac{-m^2+m^2+2m+1}{m+1}=\dfrac{2m+1}{m+1}\)
x^2-y^2=5/2
=>\(\left(\dfrac{2m+1}{m+1}\right)^2-\left(-\dfrac{m}{m+1}\right)^2=\dfrac{5}{2}\)
=>\(\dfrac{4m^2+4m+1-m^2}{\left(m+1\right)^2}=\dfrac{5}{2}\)
=>2(3m^2+4m+1)=5(m^2+2m+1)
=>6m^2+8m+2-5m^2-10m-5=0
=>m^2-2m-3=0
=>(m-3)(m+1)=0
=>m=3
(C1) tâm I1(0;2) và R1= 3;
(C2) tâm I2( 3;-4) và R2= 3
- Nhận xét :
không cắt C2
- Gọi d: ax+ by+ c= 0 là tiếp tuyến chung , thế thì : d(I1; d) = R1 và d (I2; d) = R2
- Trường hợp: a= 2b thay vào (1):
- Do đó ta có hai đường thẳng cần tìm :
- Trường hợp :
thay vào :
-Có 2 đường thẳng : d3: 2x- 1 = 0 và d4: 6x + 8y -1= 0.
Có tất cả 4 tiếp tuyến chung.
a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)
Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)
\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)
Dấu''='' xảy ra khi m =2
Vậy ...
(Các phần giải thích học sinh không phải trình bày).
(Chia hai vế của pt 2 cho √2 để hệ số của x bằng nhau)
(Trừ từng vế của hai phương trình)
Vậy hệ phương trình có nghiệm duy nhất
(Chia hai vế pt 2 cho √2 để hệ số của y đối nhau)
(Hệ số của y đối nhau nên cộng từng vế của 2 pt)
Vậy hệ phương trình có nghiệm duy nhất
Kiến thức áp dụng
Giải hệ phương trình bằng phương pháp cộng đại số
1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.
2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).
3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.
x 3 + 4 y = y 3 + 16 x 1 + y 2 = 5 ( 1 + x 2 ) ( 1 )
– Xét x = 0, hệ (I) trở thành 4 y = y 3 y 2 = 4 < = > y = ± 2
– Xét x ≠ 0, đặt y x = t < = > y = x t . Hệ (I) trở thành
x 3 + 4 x t = x 3 t 3 + 16 x 1 + x 2 t 2 = 5 ( 1 + x 2 ) < = > x 3 ( t 3 − 1 ) = 4 x t − 16 x x 2 ( t 2 − 5 ) = 4 < = > x 3 ( t 3 − 1 ) = 4 x ( t − 4 ) ( 1 ) 4 = x 2 ( t 2 − 5 ) ( 2 )
Nhân từng vế của (1) và (2), ta được phương trình hệ quả
4 x 3 ( t 3 − 1 ) = 4 x 3 ( t − 4 ) ( t 2 − 5 ) < = > t 3 − 1 = t 3 − 4 t 2 − 5 t + 20 (Do x ≠ 0) <=>4t 2 + 5 t − 21 = 0 < = > t = − 3 t = 7 4
+ Với t = – 3, thay vào (2) được x2 = 1 ⇔ x = ±1.
x = 1 thì y = –3, thử lại (1;–3) là một nghiệm của (I)
x = –1 thì y = 3, thử lại (–1;3) là một nghiệm của (I)
+ Với t = 7/4 , thay vào (2) được x 2 = − 64 31 (loại)
Vậy hệ (I) có các nghiệm (0;2), (0;–2), (1;–3), (–1;3).
Ta có: x2 + y2 = 6 (1) và x + y - 3xy = 5 (2). Từ (1) => (x + y)2 = 2xy + 6. Từ (2) => (x + y)2 = (3xy + 5)2. Do đó ta có (3xy + 5)2 = 2xy + 6
<=> 9x2y2 + 30xy + 25 = 2xy + 6 <=> 9x2y2 + 28xy + 19 = 0 <=> (xy + 1)(9xy + 19) = 0 <=> xy = - 1 hoặc \(xy=-\frac{19}{9}\).
- Nếu xy = - 1 => \(y=\frac{-1}{x}\). Thay vào (2) ta có: \(x-\frac{1}{x}=5-3=2\Leftrightarrow x^2-2x-1=0\)
Suy ra \(x=1+\sqrt{2}\) hoặc \(x=1-\sqrt{2}\). Nếu \(x=1+\sqrt{2}\Rightarrow y=1-\sqrt{2}\);Nếu \(x=1-\sqrt{2}\Rightarrow y=1+\sqrt{2}\).
- Nếu \(xy=\frac{-19}{9}\Rightarrow y=\frac{-19}{9x}\). Thay vào (2) ta có: \(x-\frac{19}{9x}=5-3.\frac{19}{9}=\frac{-4}{3}\Leftrightarrow9x^2+12x-19=0\).
Suy ra \(x=\frac{-2+\sqrt{23}}{3}\) hoặc \(x=\frac{-2-\sqrt{23}}{3}\). Nếu \(x=\frac{-2+\sqrt{23}}{3}\Rightarrow y=\frac{-2-\sqrt{23}}{3}\);Nếu \(x=\frac{-2-\sqrt{23}}{3}\Rightarrow y=\frac{-2+\sqrt{23}}{3}\).
Vậy hệ phương trình có 4 nghiệm (x;y) là: \(\left(1+\sqrt{2};1-\sqrt{2}\right),\left(1-\sqrt{2};1+\sqrt{2}\right),\left(\frac{-2+\sqrt{23}}{3};\frac{-2-\sqrt{23}}{3}\right),\left(\frac{-2-\sqrt{23}}{3};\frac{-2+\sqrt{23}}{3}\right)\)