Cho tam giác DEF, đường trung tuyến EN,FM cắt nhau tại G. Biết GN=GM.
a) CM: EG=FG
b) Tam giác DEF cân
c) Tia phân giác của góc ngoài tại đỉnh E, tia phân giác góc ngoài tại F cắt nhau tại K. CM: D,G,K thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
a.
EB là tia phân giác của ABC
=> EH = EG (1)
EC là tia phân giác của ACB
=> EK = EG (2)
Từ (1) và (2)
=> EH = EG = EK
b.
EB là tia phân giác của ABC
EC là tia phân giác của ACB
=> E là giao điểm của ba đường phân giác của tam giác ABC
=> AE là tia phân giác của BAC
c.
Gọi Ax là tia đối của tia AC
xAB + BAC = 1800
xAB = 1800 - BAC
AF là tia phân giác của xAB
=> xAF = FAB = \(\frac{xAB}{2}=\frac{180^0-BAC}{2}=90^0-\frac{BAC}{2}\)
AE là tia phân giác của BAC
=> BAE = EAC = BAC/2
FAE = FAB + BAE
\(=90^0-\frac{BAC}{2}+\frac{BAC}{2}\)
= 900
=> AE _I_ DF
Chúc bạn học tốt
mình chỉ lm dc câu a thôi
đặt ABx là góc ngoài tam giác ABC ( thêm x vào, dòng này ko ghi vào vở)
a)vì AD là tia phân giác của góc A, CE là tia phân giác góc C nên
BO là tia phân giác góc B
=> góc ABO = 1/2 góc ABC (1)
vì BF là tia phân giác góc B nên:
góc FBA = 1/2 góc ABx (2)
cộng vế 1 và 2 vào ta có
góc ABO + góc FBA = 1/2 ( góc ABC + góc ABx)
góc FBO =1/2 * 180 độ
góc FBO = 90 độ
=> vuông
a: Xét ΔDEF có
EN là đường trung tuyến
FM là đường trung tuyến
EN cắt FM tại G
Do đó: G là trọng tâm của ΔDEF
=>GF=2GM và GE=2GN
mà GM=GN
nên GF=FE
b: Xét ΔDEF có
EN là đường trung tuyến
FM là đường trung tuyến
EN=FM
Do đó: ΔDEF cân tại D(định lí)