So sánh a,b,c biết \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}vàa+b+c\ne0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a = b = c (a; b; c khác 0 vì b; a; c là các mẫu số)
=> \(M=\frac{a^2b^2c^{1930}}{b^{1935}}=\frac{b^2b^2b^{1930}}{b^{1935}}=\frac{b^{1934}}{b^{1935}}=\frac{1}{b}\)
Mà a = b = c
=> \(M=\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a/b = b/c = c/a = (a+b+c)/(a+b+c) = 1 ( vì a+b+c khác 0)
vì a/b =1 nên a=b
vì b/c =1 nên b=c
vì c/a = 1 nên c=a
=> a=b=c
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
Ta có:
\(A=\frac{a^{670}b^{672}c^{673}}{a^{2015}}=\frac{a^{670}a^{672}a^{673}}{a^{2015}}=\frac{a^{2015}}{a^{2015}}=1\)
Vậy \(A=1\)
Áp dụng t/c' dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\frac{a}{b}=1\Rightarrow a=b\) (1)
\(\Rightarrow\frac{b}{c}=1\Rightarrow b=c\) (2)
\(\Rightarrow\frac{c}{a}=1\Rightarrow c=a\) (3)
Từ (1);(2);(3) \(\Rightarrow a=b=c\)
\(\Rightarrow A=\frac{a^{670}.b^{672}.c^{673}}{a^{2015}}=\frac{a^{670}.a^{672}.a^{673}}{a^{2015}}=\frac{a^{2015}}{a^{2015}}=1\)
\(\Rightarrow A=1\)
\(\frac{a}{c}=\frac{a-b}{b-c}\Rightarrow a\left(b-c\right)=c\left(a-b\right)\) (1)
\(\frac{1}{c}+\frac{1}{a-b}=\frac{a-b+c}{c\left(a-b\right)}\) (2)
\(\frac{1}{b-c}-\frac{1}{a}=\frac{a-b+c}{a\left(b-c\right)}\) (3)
\(Từ\left(1\right),\left(2\right),\left(3\right)\Rightarrow\)điều phải chứng minh
Cộng 3 ở 3 p/s đầu và trừ 4 ở p/s cuối . Nó sẽ xuất hiện tử chung thôi
\(\frac{a+b-x}{b}+\frac{a+c-x}{b}+\frac{b+c-x}{a}+\frac{4x}{a+b+c}=1\)
\(\Leftrightarrow\left(\frac{a+b-x}{c}+1\right)+\left(\frac{a+c-x}{b}+1\right)+\left(\frac{b+c-x}{a}+1\right)+\left(\frac{4x}{a+b+c}-4\right)=0\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{b}+\frac{a+b+c-x}{a}+\frac{4\left(x-a-b-c\right)}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{b}+\frac{a+b+c-x}{a}-\frac{4\left(a+b+c-x\right)}{a+b+c}=0\)
\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}\right)=0\)
\(\Rightarrow a+b+c-x=0\)hoặc \(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0\)
Nếu \(a+b+c-x=0\Rightarrow x=a+b+c\)
Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}=0\Rightarrow x\inℝ\)