Qua điểm A nằm bên ngoài đường tròn (O) vẽ hai cát tuyến ABC và AMN sao cho hai đường thẳng BN và CM cắt nhau tại một điểm S nằm bên trong đường tròn. Chứng minh \(\widehat{A}+\widehat{BSM}=2.\widehat{CMN}.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kiến thức áp dụng
+ Số đo của góc có đỉnh nằm bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.
+ Số đo của góc có đỉnh nằm bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.
⇒ A ^ + B S M ^
= 1 2 . s đ N C ⏜ - s đ B M ⏜ + 1 2 s đ N C ⏜ + s đ M B ⏜ = s đ N C ⏜ 1
(đpcm)
a) AD và AF cách đều tâm O nên chúng bằng nhau.
b) Kẻ OI MN, OK PQ.
Trong đường tròn nhỏ, ta có: MN > PQ OI < OK.
(Dây lớn hơn thì gần tâm hơn)
Trong đường tròn lớn, OI < OK AE > AH.
(Dây gần tâm hơn thì lớn hơn)
c) A, B, O, C cách đều trung điểm AO.
d)
Điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến ABC vầ AMN, BN cắt CM tại S
Cmr
a, ^A+^BSM=2^CBN
b, AM. AN= AB.AC
a: góc OIA+góc OCA=180 độ
=>OIAC nội tiếp
b: Gọi giao của DC và OA là H
=>BC vuông góc OA tại H
Xét ΔOHD vuông tại H và ΔOIA vuông tại I có
góc HOD chung
=>ΔOHD đồng dạng với ΔOIA
=>OH*OA=OI*OD
=>OI*OD=R^2
nè