Chứng minh rằng nếu \(S\left(r\right)\) là diện tích hình tròn bán kính r thì \(S'\left(r\right)\) là chu vi đường tròn đó ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đường tròn nội tiếp tam giác ABC
Nối OA, OB, OC
Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBCv
Ta có : S A B C = S O A B + S O A C + S O B C
= (1/2).AB.r + (1/2).AC.r + (1/2).BC.r
= (1/2)(AB + AC + BC).r
Mà AB + AC + BC = 2p
Nên S A B C = (1/2).2p.r = p.r
1. Chu vi hình tròn đó là:
0,6x2x3,14= 1,884(dm)
2.Bán kính hình tròn đó là:
56,52:3,14:2=9(cm)
Diện tích hình tròn đó là:
9x9x3,14=254,34(cm2)
3.Bán kính hình O là:
8,4:2=4,2(dm)
S hình O là:
4,2x4,2x3,14=55,3896(dm2)
4.Bán kính hình O là:
9,42:3,14:2=1,5(cm)
S hình O là:
1,5x1,5x3,14=7,065(cm2)
Đáp số 1 : 1,884 dm
2 : 254,34 cm2
3 : 55,3896 dm2
4 : 7,065 cm2
ok
Tính chu vi hình tròn có
a. Bán kính: 5,3 cm
b. Đường kính: 6 cm
Gọi I,E,F lần lược là tiếp điểm của đường tròn tâm O nội tiếp với AB,BC,CA ta có OI = OE = OF = r
S ABC = S AOB + S BOC + S COA = AB.OI/2 + BC.OE/2 + CA.OF/2
= (AB + BC + CA).r/2 = pr
Gọi O là tâm đường tròn nội tiếp tam giác ABC
Nối OA, OB, OC
Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBCv
Ta có : SABC = SOAB + SOAC + SOBC
\(=\left(\frac{1}{2}\right)AB.r+\left(\frac{1}{2}\right).AC.r+\left(\frac{1}{2}\right).BC.r\)
\(=\left(\frac{1}{2}\right)\left(AB+AC+BC\right).r\)
Mà AB + AC + BC = 2p
Nên \(S_{ABC}=\left(\frac{1}{2}\right).2p.r=p.r\)
ta có : BC = 2R ; AD = AE = r
nên 2R + r = BC + (AE + AD) = (BF + FC) + (AE + AD)
= (DB + EC) + (AE + AD) = (AD + DB) + (AE + EC)
= AB + AC ( đpcm)
Tham khảo: