K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

A =\(2.\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+......+\dfrac{1}{156}\right)\)

A =\(2.\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+..........+\dfrac{1}{12.13}\right)\)

A =2.\(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)

A=\(2.\dfrac{10}{39}=\dfrac{20}{39}\)

10 tháng 4 2017

tớ làm hơi gọn nên có gì kho hiểu thì nói tớ

=2(1/12+1/30+...+1/132)

=2(1/3-1/4+1/5-1/6+1/6-1/7+...+1/11-1/12)

=2(1/12+1/5-1/12)

=2*1/5=2/5

10 tháng 8 2021

\(x.\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{78}\right)=\dfrac{220}{39}\)

\(x.\dfrac{20}{39}=\dfrac{220}{39}\)

\(x=\dfrac{220}{39}:\dfrac{20}{39}\)

x\(=11\)

10 tháng 8 2021

x6+x10+x15+........+x78=22039

⇔2x12+2x20+........+2x156=22039

Ta có:

\(\dfrac{1}{3}\times\dfrac{12}{12}=\dfrac{12}{36};\)

\(\dfrac{1}{6}\times\dfrac{6}{6}=\dfrac{6}{36};\)

\(\dfrac{1}{10}\times\dfrac{3}{3}=\dfrac{3}{30};\)

\(\dfrac{1}{15}\times\dfrac{2}{2}=\dfrac{2}{30};\)

\(\dfrac{1}{21}\times\dfrac{4}{4}=\dfrac{4}{84};\)

\(\dfrac{1}{28}\times\dfrac{3}{3}=\dfrac{3}{84};\)

\(A=\dfrac{12}{36}+\dfrac{6}{36}+\dfrac{3}{30}+\dfrac{2}{30}+\dfrac{4}{84}+\dfrac{3}{84}+\dfrac{1}{36}\)

    \(=\left(\dfrac{12}{36}+\dfrac{6}{36}+\dfrac{1}{36}\right)+\left(\dfrac{3}{30}+\dfrac{2}{30}\right)+\left(\dfrac{4}{84}+\dfrac{3}{84}\right)\)

    \(=\dfrac{19}{36}+\dfrac{5}{30}+\dfrac{7}{84}\)

    \(=\dfrac{19}{36}+\dfrac{1}{6}+\dfrac{1}{12}\)

    \(=\dfrac{19}{36}+\dfrac{6}{36}+\dfrac{3}{36}\)

    \(=\dfrac{28}{36}=\dfrac{7}{9}\)

Vậy: \(A=\dfrac{7}{9}\)

    

30 tháng 3 2017

=\(\dfrac{1}{3.2}+\dfrac{1}{2.5}+\dfrac{1}{5.3}+\dfrac{1}{3.7}+\dfrac{1}{7.4}+\dfrac{1}{4.9}+\dfrac{1}{9.5}\)=\(\dfrac{1}{3}+\dfrac{1}{5}\)

=\(\dfrac{8}{15}\)
30 tháng 3 2017

Gọi A = \(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}\)

\(\dfrac{1}{2}\)A = \(\dfrac{1}{2}.\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}\right)\)

\(\dfrac{1}{2}\)A = \(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)

\(\dfrac{1}{2}\)A = \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

\(\dfrac{1}{2}\)A = \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\dfrac{1}{2}\)A = \(\dfrac{1}{3}-\dfrac{1}{10}\)

\(\dfrac{1}{2}\)A = \(\dfrac{7}{30}\)

A = \(\dfrac{7}{30}:\dfrac{1}{2}\)

A = \(\dfrac{7}{15}\)

17 tháng 4 2018

\(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+........+\dfrac{x}{78}=\dfrac{220}{39}\)

\(\Leftrightarrow\dfrac{2x}{12}+\dfrac{2x}{20}+........+\dfrac{2x}{156}=\dfrac{220}{39}\)

\(\Leftrightarrow2x\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+..........+\dfrac{1}{12.13}\right)=\dfrac{220}{39}\)

\(\Leftrightarrow2x\left(\dfrac{1}{3}-\dfrac{1}{13}\right)=\dfrac{220}{39}\)

\(\Leftrightarrow2x.\dfrac{10}{39}=\dfrac{220}{39}\)

\(\Leftrightarrow x.\dfrac{20}{39}=\dfrac{220}{39}\)

\(\Leftrightarrow x=11\)

Vậy ...

17 tháng 4 2017

Gọi biểu thức là A

\(A=\dfrac{2x}{12}+\dfrac{2x}{20}+\dfrac{2x}{30}+....+\dfrac{2x}{156}=\dfrac{200}{39}\)

Ta có công thức :

\(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\)

Áp dụng công thức trên, ta có :

\(A=\dfrac{2x}{3.4}+\dfrac{2x}{4.5}+\dfrac{2x}{5.6}+....+\dfrac{2x}{12.13}\)

\(A=2x.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{12}-\dfrac{1}{13}\right)\)

\(A=2x.\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)

\(A=2x.\left(\dfrac{10}{39}\right)=\dfrac{200}{39}\)

\(A=2x=\dfrac{200}{39}:\dfrac{10}{39}\)

\(2x=20\)

\(\Rightarrow x=10\)

mink nghĩ vậy bạn ạ

30 tháng 3 2017

\(A=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{55}+\dfrac{1}{66}\)

\(A=2\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\right)\)

\(A=2\left(\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}+\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}\right)\)

\(A=2\left(\left(\dfrac{1}{4}-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}-\dfrac{1}{6}\right)+\left(\dfrac{1}{6}-\dfrac{1}{7}\right)+\left(\dfrac{1}{7}-\dfrac{1}{8}\right)+\left(\dfrac{1}{8}-\dfrac{1}{9}\right)+\left(\dfrac{1}{9}-\dfrac{1}{10}\right)+\left(\dfrac{1}{10}-\dfrac{1}{11}\right)+\left(\dfrac{1}{11}-\dfrac{1}{12}\right)\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{12}\right)\Rightarrow A=\dfrac{1}{3}\)

13 tháng 2 2019

\(A=4,8.\left(3,1-1,5\right)+1,5.\left(4,8-3,1\right)\)

\(A=4,8.3,1-4,8.1,5+1,5.4,8-1,5.3,1\)

\(A=3,1.\left(4,8-1,5\right)-4,8\left(1,5+1,5\right)\)

\(A=3,1.3,3-4,8.3\)

\(A=10,23-14,4=-4,17\)

13 tháng 2 2019

\(B=\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\dfrac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}=\dfrac{2^{19}.3^9+3.5.2^{18}.3^8}{2.3^9.2^{10}+3^{10}.\left(2^2\right)^{10}}=\dfrac{2^{19}.3^9+3^9.2^{18}.5}{2^{11}.3^9+3^{10}.2^{20}}=\dfrac{2^{18}.3^9\left(2+5\right)}{2^{11}.3^9\left(1+3.2^9\right)}=\dfrac{2^7.7}{1+3.2^9}\)

\(\Leftrightarrow D=1-\dfrac{1}{3}-\dfrac{1}{6}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-\dfrac{1}{28}\)

\(\Rightarrow\dfrac{1}{2}D=\dfrac{1}{2}-\dfrac{1}{2.3}-\dfrac{1}{3.4}-\dfrac{1}{4.5}-\dfrac{1}{5.6}-\dfrac{1}{6.7}-\dfrac{1}{7.8}\)

\(\Rightarrow D\dfrac{1}{2}=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{7}+\dfrac{1}{8}\)

\(\Rightarrow D=\dfrac{1}{8}.2=\dfrac{1}{4}\)

Vậy D=1/4