CM:\(3< 1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}< 6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, bạn xem lại đề
2, 15(x-3) + 8x-21 = 12(x+1) +120
<=> 23x - 66 = 12x + 132
<=> 11x = 198 <=> x = 198/11
3, 10(3x+1) + 5 - 100 = 8(3x-1) - 6x - 4
<=> 30x + 10 - 95 = 18x -12
<=> 12x = 73 <=> x = 73/12
Ta có :
\(B=1+\dfrac{1}{2}+\dfrac{1}{3}+........+\dfrac{1}{63}\)
Ta thấy :
\(1=1\)
\(\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{1}{1+1}+\dfrac{1}{1+2}< \dfrac{2}{1+1}=\dfrac{2}{2}=1\)
\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}=\dfrac{1}{3+1}+\dfrac{1}{3+2}+\dfrac{1}{3+3}+\dfrac{1}{3+4}< \dfrac{4}{3+1}=\dfrac{4}{4}=1\)
\(\dfrac{1}{8}+\dfrac{1}{9}+...+\dfrac{1}{15}=\dfrac{1}{7+1}+\dfrac{1}{7+2}+....+\dfrac{1}{7+8}< \dfrac{8}{7+1}=\dfrac{8}{8}=1\)
\(\dfrac{1}{16}+\dfrac{1}{17}+...+\dfrac{1}{31}=\dfrac{1}{15+1}+\dfrac{1}{15+2}+...+\dfrac{1}{15+16}< \dfrac{16}{15+1}=\dfrac{16}{16}=1\)
\(\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{63}=\dfrac{1}{31+1}+\dfrac{1}{31+2}+...+\dfrac{1}{31+32}< \dfrac{32}{31+1}=\dfrac{32}{32}=1\)
\(\Rightarrow B< 1+1+....+1\) (\(6\) số 1)
\(\Rightarrow B>6\rightarrowđpcm\)
Để chứng minh 3<S<6, ta cần tính giá trị của biểu thức S và thấy xem nó có nằm trong khoảng (3, 6) hay không.
Đầu tiên, ta tính tổng S bằng cách đặt S bên cạnh tổng harmonic thứ 63, rồi trừ đi tổng harmonic thứ 62:
S = 1/1 + 1/2 + 1/3 + ... + 1/63 S - 1/2 = 1/2 + 1/3 + ... + 1/63
Lặp lại phương pháp trên đối với S - 1/2, ta có:
S - 1/2 - 1/3 = 1/3 + ... + 1/63
Cứ lặp lại phương pháp trên đến khi ta được:
S - 1/2 - 1/3 - ... - 1/62 = 1/63
Tổng quát lại, ta có:
S - 1/2 - 1/3 - ... - 1/62 - 1/63 = 0
Từ đây suy ra:
3/2 < 1/2 + 1/3 + ... + 1/62 + 1/63 < 1 + 1/2 + 1/3 + ... + 1/62 < 6
Vì vậy, ta có:
3 < S < 6
Vậy, ta đã chứng minh được rằng 3<S<6.
\(\left(\dfrac{2}{\sqrt{6}-1}+\dfrac{3}{\sqrt{6}-2}-\dfrac{3}{3-\sqrt{6}}\right)\cdot\dfrac{5}{9\sqrt{6}+4}\)
\(=\left(\dfrac{2+2\sqrt{6}}{5}+\dfrac{6+3\sqrt{6}}{2}-3-\sqrt{6}\right)\cdot\dfrac{5}{9\sqrt{6}+4}\)
\(=\dfrac{4+4\sqrt{6}+30+15\sqrt{6}-30-10\sqrt{6}}{10}\cdot\dfrac{5}{9\sqrt{6}+4}\)
\(=\dfrac{1}{2}\)
Gọi \(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{63}\) là \(S\)
\(S=1+\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{17}+\dfrac{1}{18}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{33}+\dfrac{1}{34}+...+\dfrac{1}{63}+\dfrac{1}{64}\right)-\dfrac{1}{64}\\ =\left(1-\dfrac{1}{64}\right)+\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{17}+\dfrac{1}{18}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{33}+\dfrac{1}{34}+...+\dfrac{1}{63}+\dfrac{1}{64}\right)\)
Ta nhận thấy:
\(\dfrac{1}{3}\) lớn hơn \(\dfrac{1}{4}\)
\(\dfrac{1}{5},\dfrac{1}{6},\dfrac{1}{7}\) đều lớn hơn \(\dfrac{1}{8}\)
\(\dfrac{1}{9},\dfrac{1}{10},...,\dfrac{1}{15}\) đều lớn hơn \(\dfrac{1}{16}\)
\(\dfrac{1}{17},\dfrac{1}{18},...,\dfrac{1}{31}\) đều lớn hơn \(\dfrac{1}{32}\)
\(\dfrac{1}{33},\dfrac{1}{34},...,\dfrac{1}{63}\) đều lớn hơn \(\dfrac{1}{64}\)
\(\Rightarrow S>\left(1-\dfrac{1}{64}\right)+\dfrac{1}{2}+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{32}+\dfrac{1}{32}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{64}+\dfrac{1}{64}+...+\dfrac{1}{64}\right)\\ S>\left(1-\dfrac{1}{64}\right)+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\\ S>\dfrac{63}{64}+\left(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\right)\\ S>\dfrac{63}{64}+3>3\)Mặt khác ta có:
\(S=1+\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{8}+\dfrac{1}{9}+...+\dfrac{1}{15}\right)+\left(\dfrac{1}{16}+\dfrac{1}{17}+...+\dfrac{1}{31}\right)+\left(\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{63}\right)\)
\(\dfrac{1}{3}\) bé hơn \(\dfrac{1}{2}\)
\(\dfrac{1}{5},\dfrac{1}{6},\dfrac{1}{7}\) đều bé hơn \(\dfrac{1}{4}\)
\(\dfrac{1}{9},\dfrac{1}{10},...,\dfrac{1}{15}\) đều bé hơn \(\dfrac{1}{8}\)
\(\dfrac{1}{17},\dfrac{1}{18},...,\dfrac{1}{31}\) đều bé hơn \(\dfrac{1}{16}\)
\(\dfrac{1}{33},\dfrac{1}{34},...,\dfrac{1}{63}\) đều bé hơn \(\dfrac{1}{32}\)
\(\Rightarrow S< 1+\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{8}+\dfrac{1}{8}+...+\dfrac{1}{8}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{32}+\dfrac{1}{32}+...+\dfrac{1}{32}\right)\\ S< 1+1+1+1+1+1\\ S< 6\)