cho tam giác ABC . Trên cạnh BC lấy điểm M sao cho BM =2/3 BC . Trên tia đối của tia CA lấy điểm N sao cho CD=CA . Tia AM cắt BD tại điểm N . CMR NB=ND
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBAD có
BC là trung tuyến
BM=2/3BC
=>M là trọng tâm
mà AM cắt BD tại N
nên N là trung điểm của BD
Xét ΔBAD có
BC là trung tuyến
BM=2/3BC
=>M là trọng tâm
=>N là trung điểm của BD
Câu a bạn làm được thì mình khỏi làm lại nhé! Còn đây là câu b và c.
Xét \(\Delta\)NBD và \(\Delta\)ECM có: BD=CE(gt), NB=CM(gt),ND=ME (c/m a)
=> \(\Delta\)=\(\Delta\) (ccc) => \(\widehat{DNB}=\widehat{CME}\) mà \(\widehat{CME}=\widehat{DMB}\) (đối đỉnh)
=> \(\widehat{DNB}=\widehat{DMB}\). Xét tam giác NDM có: \(\widehat{DNB}=\widehat{DMB}\) => \(\Delta\)NDM cân tại D => DN=DM mà DN=ME (c/m a) => DM=ME (1)
Ta có B.M,C thẳng hàng =>\(\widehat{BMD}+\widehat{DMC}=180^o\)
Mặt khác \(\widehat{BMD}=\widehat{CME}\) ( cùng = \(\widehat{BND}\))
=>\(\widehat{CME} +\widehat{DMC}=180^o\) => D,M,E thẳng hàng (2)
Từ (1) và (2) => M trung điểm DE.