Tìm 1 đa thức P sao cho tổng của P với đa thức -x2y5 + 3y3 - 3x3 + x3y + 2015 là đa thức 0
Ghi cách trình bày rõ ràng giúp mình nha, mình cần gấp trong sáng mai r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P-x^2y^5+3y^3-3x^3+x^3y+2015=0\)
\(\Leftrightarrow P=x^2y^5-3y^3+3x^3-x^3y-2015\)
\(x^3-3x^2-3x-1=\left(x-4\right)\left(x^2+x+1\right)+3\)
\(\Rightarrow x^3-3x^2-3x-1\) chia hết \(x^2+x+1\) khi \(3⋮x^2+x+1\)
\(\Rightarrow x^2+x+1=Ư\left(3\right)\) (1)
Mà x nguyên dương \(\Rightarrow x^2+x+1\ge1^2+1+1=3\) (2)
(1);(2) \(\Rightarrow x^2+x+1=3\)
\(\Rightarrow x=1\)
Bài 2:
a: \(3x^2-9xy\)
\(=3x\cdot x-3x\cdot3y\)
=3x(x-3y)
c: \(x^2-4x+4-y^2\)
\(=\left(x^2-4x+4\right)-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
Bài 1:
a: \(2x\left(x^2-3x+5\right)\)
\(=2x\cdot x^2-2x\cdot3x+2x\cdot5\)
\(=2x^3-6x^2+10x\)
c: (x-3)(2x+1)
\(=2x^2+x-6x-3\)
\(=2x^2-5x-3\)
I: Trắc nghiệm
Câu 1: A
Câu 2: A
Câu 3: B
Câu 4: C
Câu 5: B
Câu 8: A
Câu 9: B
Câu 10: C
Câu 11: D
\(f\left(x\right)⋮g\left(x\right)\)
\(\Leftrightarrow x^4-3x^3+4x^2-x^2+3x-4+\left(a-3\right)x+\left(b+4\right)⋮x^2-3x+4\)
\(\Leftrightarrow\left(a,b\right)=\left(3;-4\right)\)
Ta có:
\(P+\left(-x^2y^5+3y^3-3x^3+x^3y+2015\right)=0\)
\(\Rightarrow P=0-\left(-x^2y^5+3y^3-3x^3+x^3y+2015\right)\)
\(\Rightarrow P=x^2y^5-3y^3+3x^3-x^3y-2015\)
Tích mình nha!