mọi người giúp mình giải mấy câu này được ko ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 13:
a: Ta có: \(AE=EB=\dfrac{AB}{2}\)
\(AD=DC=\dfrac{AC}{2}\)
mà AB=AC
nên AE=EB=AD=DC
Xét ΔAED có AE=AD
nên ΔADE cân tại A
b: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{BAD}\) chung
AD=AE
Do đó: ΔABD=ΔACE
c: Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)
Do đó: DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà BD=CE
nên BEDC là hình thang cân
Bài 1:
a) (2x+5)(x-6)=2x2+5x-12x-30=2x2-7x-30
b) (2x-1)(x2-4x+3)=2x3-8x2+6x-x2+4x-3=2x3-9x2+10x-3
c) x2-2x-(x-7)(x+2)=x2-2x-x2+7x-2x+14=3x+14
d) 3x-(x+2)(x+4)=3x-x2-2x-4x-8=-x2-3x-8
Bài 2:
a) 2(x+1)=x-1
⇒2x+2=x-1
⇒2x+2-x+1=0
⇒x+3=0
⇒x=-3
b) x(x+2)-x2=1
⇒x2+2x-x2=1
⇒2x=1
⇒x=0,5
c) 3x(x-2)=(3x-1)(x-1)-5
⇒3x2-6x=3x2-x-3x+1-5
⇒3x2-6x-3x2+x+3x-1+5=0
⇒-2x+4=0
⇒-2x=-4
⇒x=2
d) 6(x-1)(x-2)-6x(x+3)=2x
⇒6(x2-x-2x+2)-6x2-18x-2x=0
⇒6x2-6x-12x+12-6x2-18x-2x=0
⇒-38x+12=0
⇒-38x=-12
⇒x=\(\dfrac{6}{19}\)
1.
\(\Leftrightarrow\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=0\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=0\)
\(\Leftrightarrow x-\dfrac{\pi}{4}=k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)
2.
\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
3.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=\dfrac{5}{8}\)
\(\Leftrightarrow1-\dfrac{1}{2}sin^22x=\dfrac{5}{8}\)
\(\Leftrightarrow1-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2}cos4x\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{3}{4}+\dfrac{1}{4}cos4x=\dfrac{5}{8}\)
\(\Leftrightarrow cos4x=-\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{2\pi}{3}+k2\pi\\4x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{6}+\dfrac{k\pi}{2}\end{matrix}\right.\)
Tác giả Đặng Thai Mai từng nói: ''Người việt nam ngày nay có lí do đầy đủ và vững chắc để tự hào với tiếng nói của mình.''
Bài 4:
a) Ta có: AM+MB=AB
AN+NC=AC
mà MB=NC
và AB=AC
nên AM=AN
Xét ΔABC có
\(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)
nên MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
b) Ta có: ΔABC cân tại A
nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-40^0}{2}=70^0\)
\(\Leftrightarrow\widehat{BMN}=\widehat{CNM}=180^0-70^0=110^0\)
Bài 3:
Ta có: ABCD là hình thang cân
nên AD=BC
mà AD=AB
nên BC=AB
Xét ΔBAC có BA=BC(cmt)
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)(hai góc ở đáy)
mà \(\widehat{BAC}=\widehat{ACD}\)(hai góc so le trong, AB//CD
nên \(\widehat{BCA}=\widehat{DCA}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
a: \(=\dfrac{x+2}{x+2}=1\)
b: \(=\dfrac{2x+6}{x+3}=2\)
1A
Sau ''where'' là S và căn cứ vào nghĩa của câu nha em
2A
Trước ''whom'' là chủ ngữ chỉ người và ''girl'' là đối tượng được nghĩ tới
Câu 2 này giải thích vậy không biết em có hiểu không :)))?
\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)
\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)
\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)
Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)
\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)
\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)
\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)
\(\Leftrightarrow x_2-x_1=2\)
Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)
\(\Rightarrow c=2\)
Có 1 giá trị nguyên
\(x^2+2x+1=x^2+2\cdot1x+1^2=\left(x+1\right)^2\)
\(4x^2+12x+9=\left(2x\right)^2+2\cdot3\cdot2x+3^2=\left(2x+3\right)^2\)
\(\dfrac{4}{9}a^2-\dfrac{4}{3}a+1=\left(\dfrac{2}{3}a\right)^2-2\cdot\dfrac{2}{3}\cdot1a+1^2=\left(\dfrac{2}{3}a-1\right)^2\)
\(a^2+5a+\dfrac{25}{4}=a^2+2\cdot2,5a+2,5^2=\left(2,5+a\right)^2\)