Cho ps A=\(\dfrac{10n+3}{4n-10}\)với n\(\in\)N
Tìm n để A=\(13^1_2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯC(10n-3,4n-10)=d ( d nguyên tố)
=>10n-3 chia hết cho d và 4n-10 chia hết chod
=>20n-6 chia hết chod và 20n -50 chia hết cho d
=>(20n-6)-(20n-50) chia hết cho d
=>44 chia hết cho d
=>de(2,11)
NẾU d=11
=>4n-3=11.k
=>n=(11k+3):4
Nếu d =2
=>4n-3=2k
=>n=(2k+3):4(loại vì neN
VẬY NẾU n=(2k+3) thì A rút gọn được
Ta có: A=\(\dfrac{10n-3}{4n-10}\) (1)
TH1: Để (1) có thể rút gọn thì 4n-10\(⋮\)10n-3
20n-50\(⋮\)20n-6
50\(⋮\)20n-6
Do đó 20n-6\(\in\)Ư(50)
Ư(50)={1;2;5;10;25;50}
Ta lập bảng sau:
20n-6 | 1 | 2 | 5 | 10 | 25 | 50 |
n | loại | loại | loại | loại | loại | loại |
TH2: Để (1) có thể rút gọn thì 10n-3\(⋮\)4n-10
20n-6\(⋮\)20n-50
6\(⋮\)20n-50
Do đó 20n-50\(\in\)Ư(6)
Ư(6)={1;2;3;6}
Ta lập bảng sau:
20n-50 | 1 | 2 | 3 | 6 |
n | loại | loại | loại | loại |
Vậy \(n\in\left\{\varnothing\right\}\).
\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)
\(A=\dfrac{10n-3}{5n+2}=\dfrac{10n+4-7}{5n+2}=\dfrac{2\left(5n+2\right)-7}{5n+2}=2-\dfrac{7}{5n+2}\)
Để A nguyên thì \(7\) ⋮ 5n + 2
\(\Rightarrow5n+2\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow5n\in\left\{-1;-3;5;-9\right\}\)
\(\Rightarrow n\in\left\{-\dfrac{1}{5};-\dfrac{3}{5};1;-\dfrac{9}{5}\right\}\)
________________
\(B=\dfrac{12n+5}{6n-3}=\dfrac{12n-6+11}{6n-3}=\dfrac{2\left(6n-3\right)+11}{6n-3}=2+\dfrac{11}{6n-3}\)
Để B nguyên thì \(11\) ⋮ 6n - 3
\(\Rightarrow6n-3\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow6n\in\left\{4;2;14;-8\right\}\)
\(\Rightarrow n\in\left\{\dfrac{2}{3};\dfrac{1}{3};\dfrac{7}{3};-\dfrac{4}{3}\right\}\)
Lời giải:
$A=\frac{15-3n}{n+2}=\frac{21-3(n+2)}{n+2}=\frac{21}{n+2}-3$
Để $A$ lớn nhất thì $\frac{21}{n+2}$ lớn nhất
Điều này xảy ra khi $n+2>0$ và $n+2$ nhỏ nhất.
Với $n$ nguyên, $n+2>0$ và nhỏ nhất bằng 1
$\Rightarrow n+2=1$
$\Rightarrow n=-1$
------------------------------------
$B=\frac{17-2(2n+1)}{2n+1}=\frac{17}{2n+1}-2$
Để $B$ lớn nhất thì $\frac{17}{2n+1}$ lớn nhất
Điều này xảy ra khi $2n+1>0$ và $2n+1$ nhỏ nhất
Với $n$ nguyên thì $2n+1$ nguyên dương nhỏ nhất bằng 1
$\Rightarrow 2n+1=1$
$\Rightarrow n=0$
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
Ta có :
\(A=13\dfrac{1}{2}\\ \Leftrightarrow\dfrac{10n+3}{4n-10}=\dfrac{27}{2}\\ \Leftrightarrow\left(10n+3\right)\cdot2=\left(4n-10\right)\cdot27\\ \Leftrightarrow20n+6=108n-270\\ \Leftrightarrow6+270=108n-20n\\ \Leftrightarrow276=88n\\ \Leftrightarrow n=\dfrac{69}{22}\)