Chứng minh rằng :
a) Nếu \(\overrightarrow{a}=\overrightarrow{b}\) thì \(m\overrightarrow{a}=m\overrightarrow{b}\)
b) Nếu \(m\overrightarrow{a}=m\overrightarrow{b}\) và \(m\ne0\) thì \(\overrightarrow{a}=\overrightarrow{b}\)
c) Nếu \(m\overrightarrow{a}=n\overrightarrow{a}\) và \(\overrightarrow{a}\ne\overrightarrow{0}\) thì \(m=n\)
a) Giả sử \(m\overrightarrow{a}=m\overrightarrow{b}\)
\(\Leftrightarrow m\overrightarrow{a}-m\overrightarrow{b}=\overrightarrow{0}\)
\(\Leftrightarrow m\left(\overrightarrow{a}-\overrightarrow{b}\right)=\overrightarrow{0}\)
\(\Leftrightarrow m.\overrightarrow{0}=\overrightarrow{0}\) (do \(\overrightarrow{a}=\overrightarrow{b}\) )
\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\) (luôn đúng).
Vậy điều giả sử đúng.
Ta chứng minh được:
Nếu \(\overrightarrow{a}=\overrightarrow{b}\) thì \(m\overrightarrow{a}=m\overrightarrow{b}\).
b) Có: \(m\overrightarrow{a}=m\overrightarrow{b}\)\(\Leftrightarrow m\overrightarrow{a}-m\overrightarrow{b}=\overrightarrow{0}\)
\(\Leftrightarrow m\left(\overrightarrow{a}-\overrightarrow{b}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{0}\) (do \(m\ne0\) )
\(\Leftrightarrow\overrightarrow{a}=\overrightarrow{b}\) (đpcm).
c) Có \(m\overrightarrow{a}=n\overrightarrow{a}\Leftrightarrow m\overrightarrow{a}-n\overrightarrow{a}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{a}\left(m-n\right)=\overrightarrow{0}\)
\(\Leftrightarrow m-n=0\) ( do \(\overrightarrow{a}\ne0\) )
\(\Leftrightarrow m=n\) (đpcm).