Giải hệ phương trình :
\(\left\{{}\begin{matrix}a+2b+3c=10\\2a+3b+c=13\\3a+b+2c=13\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{5a+10b+15c}{4}+\left(\dfrac{3}{a}+\dfrac{3a}{4}\right)+\left(\dfrac{9}{2b}+\dfrac{b}{2}\right)+\left(\dfrac{4}{c}+\dfrac{c}{4}\right)\)
\(\ge\dfrac{5\left(a+2b+3c\right)}{4}+2\sqrt{\dfrac{3}{a}.\dfrac{3a}{4}}+2\sqrt{\dfrac{9}{2b}.\dfrac{b}{2}}+2\sqrt{\dfrac{4}{c}.\dfrac{c}{4}}\)
\(\Leftrightarrow P\ge\dfrac{5.20}{4}+3+3+2=33\)
Dấu "=" xảy ra khi a=2;b=3;c=4
Vậy \(P_{min}=33\)
a) Ta có: \(\left\{{}\begin{matrix}49x+7y=-1\\-\dfrac{4}{3}x-2y=\dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}98x+14y=-2\\-\dfrac{28}{3}x-14y=\dfrac{28}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{266}{3}x=\dfrac{22}{3}\\49x+7y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{133}\\49\cdot\dfrac{11}{133}+7y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{133}\\7y=-1-\dfrac{77}{19}=-\dfrac{96}{19}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=\dfrac{11}{133}\\y=-\dfrac{96}{133}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{11}{133}\\y=-\dfrac{96}{133}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}4x+3y=13\\5x-3y=-31\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\3y=13-4x=13-4\cdot\left(-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\3y=21\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)
Hì hì, thật ra thì mình không biết giúp thằng bạn mình như thế nào nên đành tự đăng câu hỏi vậy :))
Cộng vế:
\(\Rightarrow x^2+y^2+2xy+x+y=20\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-20=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=4\\x+y=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=4-x\\y=-5-x\end{matrix}\right.\)
Thế vào pt đầu...
Coi PT thứ nhất là PT(1) và PT thứ 2 là PT(2)
a)
Từ PT$(2)\Rightarrow y=18-5x$
Thế vào PT$(1)$: $3x-2(18-5x)=5$
$\Leftrightarrow 13x=41\Leftrightarrow x=\frac{41}{13}$
\(y=18-5x=18-5.\frac{41}{13}=\frac{29}{13}\)
Vậy.......
b)
PT\((1)\Rightarrow y=2x-8\)
Thế vào $PT(2)\Rightarrow$ \(x+3(2x-8)=10\)
$\Leftrightarrow 7x=34\Rightarrow x=\frac{34}{7}$
$y=2x-8=2.\frac{34}{7}-8=\frac{12}{7}$
Vậy........
c)
HPT \(\Leftrightarrow \left\{\begin{matrix} 12x-9y=6\\ 12x-16y=-8\end{matrix}\right.\)
Từ PT$(1)\Rightarrow 12x=9y+6$
Thế vào PT$(2)\Rightarrow 9y+6-16y=-8$
$\Leftrightarrow y=2$
$x=\frac{9y+6}{12}=\frac{9.2+6}{12}=2$
Vậy.........
d)
HPT \(\Leftrightarrow \left\{\begin{matrix} 10x+25y=65\\ 10x-6y=-28\end{matrix}\right.\)
Từ PT$(1)\Rightarrow 10x=65-25y$
Thế vào PT$(2)\Rightarrow 65-25y-6y=-28$
$\Leftrightarrow y=3$
$x=\frac{65-25y}{10}=\frac{65-25.3}{10}=-1$
Vậy........
3a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) (ĐK: x≠2;y≠\(\dfrac{1}{2}\))
Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{2y-1}=b\) (ĐK: a>0; b>0)
Hệ phương trình đã cho trở thành
\(\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\2\left(2-b\right)-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\4-2b-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\b=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\left(TM\text{Đ}K\right)\\b=\dfrac{3}{5}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Khi đó \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{2y-1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\left(x-2\right)=5\\3\left(2y-1\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\6y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\left(TM\text{Đ}K\right)\\y=\dfrac{4}{3}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=\(\left(\dfrac{19}{7};\dfrac{4}{3}\right)\)
b) Bạn làm tương tự như câu a kết quả là (x;y)=\(\left(\dfrac{12}{5};\dfrac{-14}{5}\right)\)
c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)(ĐK: x≥1;y≥0)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+4\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49\left(x-1\right)=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49x-49=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{218}{49}\\y=\dfrac{4}{49}\end{matrix}\right.\left(TM\text{Đ}K\right)\)
Bài 4:
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}3\left(3a-2\right)-2\left(2b+1\right)=30\\3\left(a+2\right)+2\left(3b-1\right)=-20\end{matrix}\right.\)
=>9a-6-4b-2=30 và 3a+6+6b-2=-20
=>9a-4b=38 và 3a+6b=-20+2-6=-24
=>a=2; b=-5
a. Bạn tự giải
b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:
\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)
Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên
Bấm máy tính Casio fx-570 VN giải hệ phương trình 3 ẩn
Mode\(\rightarrow\) 5\(\rightarrow\) 2 :
Ấn dấu = ta được a=3, b=2, c=1 (trên màn hình máy tính là x,y,z)
2 Pt đầu khử a ,2 pt sau khử a ,ta được HPT 2 ẩn b,c