Phương pháp sử dụng hằng đẳng thức:
Phân tích các đa thức sau thành nhân tử:
(a+b)^3-(a^3+b^3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(4-a-b\right)\left(4+a-b\right)\), đằng trước là dấu trừ thì khi bỏ ngoặc phải đổi dấu chứ nhỉ :0
(a+b)3-(a-b)3=a3+3a2b+3ab2+b3-(a3-3a2b+3ab2-b3)
=a3+3a2b+3ab2+b3-a3+3a2b-3ab2+b3
=6a2b+2b3
Áp dụng hđt a3-b3=(a-b)(a2+ab+b2) ấy
\(\left(a+b\right)^3-\left(a-b\right)^3=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2b\left(3a^2+b^2\right)\)
a) 16x2 - ( x2 + 4 )2
= ( 4x )2 - ( x2 + 4 )2
= [ 4x - ( x2 + 4 ) ][ 4x + ( x2 + 4 ) ]
= ( -x2 + 4x - 4 )( x2 + 4x + 4 )
= [ -( x2 - 4x + 4 ) ]( x + 2 )2
= [ -( x - 2 )2 ]( x + 2 )2
b) ( x + y )3 + ( x - y )3
= [ ( x + y ) + ( x - y ) ][ ( x + y )2 - ( x + y )( x - y ) + ( x - y )2 ]
= ( x + y + x - y )[ x2 + 2xy + y2 - ( x2 - y2 ) + x2 - 2xy + y2 ]
= 2x( 2x2 + 2y2 - x2 + y2
= 2x( x2 + 3y2 )
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
bài 1: a) \(x^2-3=x^2-\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)\)
b) \(\left(a+b\right)^2-\left(a+b\right)^2=\left(a+b+a+b\right)\left(a+b-a-b\right)=2a+2b=2\left(a+b\right)\)
c) \(x^3-27b^3=\left(x-3b\right)\left(x^2+3xb+b^2\right)\)
( a + b )3 - ( a3 + b3 )
= a3 + 3a2b + 3ab2 + b3 - a3 - b3
= 3a2b - 3ab2
= 3ab ( a + b )
\(\left(a+b\right)^3-\left(a^3+b^3\right)\)
\(=\left(a+b\right)^3-\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left(a^2+2ab+b^2-a^2+ab-b^2\right)\)
\(=3ab\left(a+b\right)\)