dễ lắm :
1,Tìm số đối : \(\dfrac{1}{2};\dfrac{-3}{4};\dfrac{7}{-12}\)
2, Thu gọn : \(\dfrac{2^4.3^3-2^4.3^3}{2^5.3^4-2^6.3^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{6}x+\dfrac{1}{12}x+\dfrac{1}{20}x+...+\dfrac{1}{380}=9\)
\(x\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{380}\right)=9\)
\(x\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{19.20}\right)=9\)
\(x\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)=9\)
\(x\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=9\)
\(x.\dfrac{9}{20}=9\)
\(x=9:\dfrac{9}{20}\)
\(x=20\)
Vậy \(x=20\)
1)+Số đối của \(\dfrac{2}{3}\)là \(-\dfrac{2}{3}\)
+Số đối của\(-\dfrac{1}{4}\)là\(\dfrac{1}{4}\)
+Số đối của -0,5 là 0,5
Vậy tổng các số đối của\(\dfrac{2}{3};-\dfrac{1}{4};-0,5\)là:
\(\left(-\dfrac{2}{3}\right)+\dfrac{1}{4}+0,5=\dfrac{1}{12}\)
2)Ta có số nghịch đảo của x là \(\dfrac{1}{x}\)
Theo đề ta lại có:
5 lần \(\dfrac{1}{x}\)là\(\dfrac{1}{2}\Rightarrow\dfrac{1}{x}=\dfrac{1}{2}:5=\dfrac{1}{10}\)
Vậy x=10
đặt x^2+ax+b= (x-1)(x-m)
x^2+ax+b/x^2-1 = x-m/x+1
lim x-m/x+1=-1/2 suy ra 1-m/2=-1/2 nên m = 3
x^2+ax+b= (x-1)(x-3)=x^2-4x+3 suy ra a=-4, b=3
a: \(\dfrac{-1}{2}+\dfrac{2}{3}=\dfrac{-3+4}{6}=\dfrac{1}{6}\)
Số đối là -1/6
b \(-\dfrac{3}{4}+\dfrac{-4}{3}=\dfrac{-9-16}{12}=\dfrac{-25}{12}\)
Số đối là 25/12
c: \(\dfrac{-7}{2}+\dfrac{-3}{4}=\dfrac{-14-3}{4}=\dfrac{-17}{4}\)
Số đối là 17/4
d: \(-2-\dfrac{3}{4}=\dfrac{-8-3}{4}=-\dfrac{11}{4}\)
Số đối là 11/4
Số đối của \(\dfrac{1}{3}\) là \( - \dfrac{1}{3}\) vì \(\dfrac{1}{3} + \left( { - \dfrac{1}{3}} \right) = 0\)
Số đối của \(\dfrac{{ - 1}}{3}\) là \(\dfrac{1}{3}\) vì \(\dfrac{1}{3} + \dfrac{{ - 1}}{3} = \dfrac{1}{3} + \left( { - \dfrac{1}{3}} \right) = 0\)
Số đối của \(\dfrac{{ - 4}}{5}\) là \(\dfrac{4}{5}\) vì \(\dfrac{{ - 4}}{5} + \dfrac{4}{5} = \dfrac{{ - 4 + 4}}{5} = 0\)
a)\(\left|\dfrac{1}{2}+x\right|-1=\dfrac{11}{2}\)
\(\Rightarrow\left|\dfrac{1}{2}+x\right|=\dfrac{11}{2}+1=\dfrac{13}{2}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}+x=\dfrac{-13}{2}\\\dfrac{1}{2}+x=\dfrac{13}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=6\end{matrix}\right.\)
b)\(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2014}-1\right)\)
\(=\dfrac{-1}{2}.\dfrac{2}{-3}.\dfrac{-3}{4}...\dfrac{2012}{-2013}.\dfrac{-2013}{2014}\)
\(=\dfrac{-1}{2014}\)
số nghịch đảo của 50% là:\(\dfrac{100}{50}=2\)
a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)
hay \(x=\dfrac{1}{6}\)
Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)
b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy: \(B_{min}=4\) khi x=2 và y=6
Bài 1: Tìm số đối.
- Số đối của \(\dfrac{1}{2}\) là \(-\dfrac{1}{2}\)
- Số đối của \(-\dfrac{3}{4}\) là \(\dfrac{3}{4}\)
- Số đối của \(\dfrac{7}{-12}\) là \(\dfrac{7}{12}\)
Bài 2: Thu gọn:
\(\dfrac{2^4.3^3-2^4.3^3}{2^5.3^4-2^6.3^3}=\dfrac{0}{2^5.3^4-2^6.3^3}=0\)
xin lỗi mk ghi sai đề