1) tính các góc hình bình hành ABCD biết
a) góc A = 115 độ
b) góc B = góc C = 30 độ
2) cho tam giác ABC cân có AB=AC=5cm.Gọi M là điểm thuộc cạnh BC.Kẻ MD//AC,ME//AB( D thuộc AB,E thuộc AC)
tinh chu vi tu giac ADME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, MK _|_ BH (gt)
AC _|_ BH (gt)
MK; AC phân biệt
=> MK // AC (tc)
=> góc ACB = góc KMB (đồng vị)
tam giác ABC cân tại A (gt) => góc ACB = góc ABC (tc)
=> góc ABC = góc KMB
xét tam giác BKM và tam giác MDB có : BM chung
góc BDM = góc MKB = 90 (gt)
=> tam giác BKM = tam giác MDB (ch - gn)
b, KH _|_ AC (gt)
ME _|_ AC (gt)
KH; ME phân biệt
=> KH // ME (tc)
=> góc KHM = góc HME (slt)
xét tam giác KHM và tam giác EMH có : HM chung
góc MKH = góc HEM = 90
=> tam giác KHM = tam giác EMH (ch - gn)
c, tam giác KHM = tam giác EMH (Câu b) => ME = KH (đn)
tam giác BKM = tam giác MDB (câu a) => MD = BK (đn)
=> MD + ME = BK + KH
mà BK + KH = BH
=> MD + ME = BH
Cm: a) Ta có: AC \(\perp\)HK (gt)
MK \(\perp\)HK (gt)
=> AC // HM => \(\widehat{BMK}=\widehat{C}\) (đồng vị)
mà \(\widehat{C}=\widehat{B}\) (vì t/giác ABC cân tại A)
=> \(\widehat{B}=\widehat{KMB}\)
Xét t/giác BKM và t/giác MDB
có: \(\widehat{BKM}=\widehat{BDM}=90^0\) (gt)
BM : chung
\(\widehat{BMK}=\widehat{B}\) (cmt)
=> t/giác BKM = t/giác MDB
b) Xét t/giác KHM và t/giác EHM
có: \(\widehat{MKH}=\widehat{MEH}=90^0\) (gt)
HM : chung
\(\widehat{KMH}=\widehat{MHE}\) (so le trong vì AC // KM)
=> t/giác KHM = t/giác EHM (ch - gn)
c) Ta có: BH = BK + KH
mà BK = DM (vì t/giác BKM = t/giác MDB) ; ME = KH (vì t/giác KHM = t/giác EHM)
=> DM + ME = BH (Đpcm)
b: Xét ΔMEC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)
nên ΔMEC cân tại E