Cho tam giác ABC có AB<AC ,hai trung tuyến BE,CF và trọng tâm G.CMR:
a) BE<CF
b) góc GBC >góc GCB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do G là trọng tâm tam giác nên ta có :
\(\hept{\begin{cases}CG=\frac{2}{3}CN\\BG=\frac{2}{3}BM\end{cases}}\Rightarrow CG>BG\Rightarrow\widehat{GBC}>\widehat{GCB}\)
A B C E F G
a) Do AB > AC nên \(\widehat{ACB}>\widehat{ABC}\) (1)
Do E thuộc AC nên \(\widehat{ACB}=\widehat{ECB}\)
Trong tam giác BCE.Góc ECB đối diện cạnh BE (2)
Do F thuộc AB nên \(\widehat{ABC}=\widehat{FBC}\)
Trong tam giác FBC.Góc FBC đối diện cạnh FC (3)
Từ (1) và (2) và (3) suy ra BE < CF
b)Từ kết quả câu a) suy ra \(\frac{2}{3}BE< \frac{2}{3}CF\Leftrightarrow BG< CG\)
Xét tam giác BGC,theo quan hệ giữa góc là cạnh đối diện:\(\widehat{GBC}< \widehat{GCB}\) (đpcm)
Câu b bạn làm đúng rồi.
Câu a em tham khảo bài làm câu b của link này nheS
Câu hỏi của loc do - Toán lớp 7 - Học toán với OnlineMath
a: Xét ΔABC có
CN,BM là trung tuyến
CN cắt BM tại G
=>G là trọng tâm
=>CG=2GN=GK
b: G là trọng tâm của ΔABC
=>BG=2GM=GI
Xét tứ giác BCIK có
G là trung điểm chung của BI và CK
=>BCIK là hình bình hành
=>IK//BC và IK=BC
a ) dựa vào AB<AC và định lí cạnh đối diện vs góc lớn hơn là cạnh lớn hơn
b) dựa vào AB < AC và định lí góc đối diện vs cạnh lớn hơn là góc lớn hơn
Quên b) còn dựa vào tính chất cảu đg trung tuyến nữa !