Tìm m để các bất phương trình sau vô nghiệm :
a) \(5x^2-x+m\le0\)
b) \(mx^2-10x-5\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)
Nếu m = 1, hệ vô nghiệm
Nếu m ≠ 1, hệ tương đương
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)
Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2-3x+2\le0\\mx+1-m\le0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}1\le x\le2\\x\le\dfrac{-1+m}{m}\end{matrix}\right.\)
để hpt trên có nghiệm thì \(\dfrac{-1+m}{m}\le2\) ĐK m ≠ 0
\(< =>m\ge-1\)
Vậy .....
\(x^2-3x+2\le0\Leftrightarrow1\le x\le2\) \(\Rightarrow D_1=\left[1;2\right]\)
Xét \(mx\le m-1\)
- Với \(m=0\) BPT vô nghiệm
- Với \(m>0\Leftrightarrow x\le\dfrac{m-1}{m}\) \(\Rightarrow D_2=(-\infty;\dfrac{m-1}{m}]\)
Hệ có nghiệm khi \(D_1\cap D_2\ne\varnothing\)
\(\Leftrightarrow\dfrac{m-1}{m}\ge1\) \(\Rightarrow\) không tồn tại m thỏa mãn
- Với \(m< 0\Leftrightarrow x\ge\dfrac{m-1}{m}\Rightarrow D_2=[\dfrac{m-1}{m};+\infty)\)
\(D_1\cap D_2\ne\varnothing\Leftrightarrow\dfrac{m-1}{m}\le2\)
\(\Leftrightarrow m-1\ge2m\Rightarrow m\le-1\)
Vậy \(m\le-1\)
a.
Pt có 2 nghiệm pb khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m+3\right)^2-\left(m+1\right)\left(-m+2\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\2m^2+7m+7>0\left(\text{luôn đúng}\right)\end{matrix}\right.\)
\(\Rightarrow m\ne-1\)
b.
BPT vô nghiệm khi \(\left(m^2-4m-5\right)x^2+2\left(m-5\right)-1< 0\) nghiệm đúng với mọi x
- Với \(m=-1\) ko thỏa mãn
- Với \(m=5\) thỏa mãn
- Với \(m\ne\left\{-1;5\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}m^2-4m-5< 0\\\Delta'=\left(m-5\right)^2+m^2-4m-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\\left(m-5\right)\left(2m-4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\2< m< 5\end{matrix}\right.\) \(\Rightarrow2< m< 5\)
Kết hợp lại ta được: \(2< m\le5\)
a)
Để \(5x^2-x+m>0\) thì:
\(\Delta< 0\Rightarrow1-20m< 0\Rightarrow m>\dfrac{1}{20}\)
b)
\(mx^2-10x-5< 0\)
Xét \(m=0\) ta có: \(-10x-5< 0\)\(\Leftrightarrow x>\dfrac{1}{2}\) (loại)
Xét \(m\ne0\). Theo định lý về dấu tam thức bậc hai:
\(mx^2-10x-5< 0\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\25+5m< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m< -5\end{matrix}\right.\)\(\Leftrightarrow m< -5\).
Vậy với \(m< -5\) thì \(mx^2-10x-5< 0\).
\(x^2+10x+16\le0\Rightarrow-8\le x\le-2\)
Xét BPT: \(mx\ge3m+1\Leftrightarrow m\left(x-3\right)\ge1\) trên \(\left[-8;-2\right]\)
Do \(-8\le x\le-2\Rightarrow x-3< 0\)
Do đó BPT tương đương:
\(m\le\dfrac{1}{x-3}\) (1)
(1) vô nghiệm khi và chỉ khi \(m>\max\limits_{\left[-8;-2\right]}\dfrac{1}{x-3}\)
\(\Rightarrow m>-\dfrac{1}{5}\)
câu b
- Xét m = 0.
Phương trình trở thành: \(-10x-5=0\)\(\Leftrightarrow x=\dfrac{-1}{2}\) .
Khi m = 0 phương trình có nghiệm \(x=\dfrac{1}{2}\) (loại).
Xét \(m\ne0\) (1)
Phương trình vô nghiệm: => \(\Delta< 0\) \(\Rightarrow25+5m< 0\Rightarrow m< \dfrac{-25}{5}=-5\) (2)
Kết hợp với điều kiện (1) suy ra với \(m>-5\) thì phương trình vô nghiệm.
Làm lại:
a)
\(5x^2-x+m\le0\)(a)
để (a)vô nghiệm \(\Rightarrow5x^2-x+m=0\) phải vô nghiệm => \(\Delta=1-20m< 0\Rightarrow m>\dfrac{1}{20}\)
b)\(mx^2-10x-5\ge0\left(b\right)\)
Để b vô nghiệm cần
(1) \("a"\ne0\Rightarrow m\ne0\)
(2) \("a"< 0\Rightarrow m< 0\)
(3) \(\left[{}\begin{matrix}\Delta\\\Delta'\end{matrix}\right.< 0\Rightarrow\)\(5^2+5m< 0\Rightarrow m< \dfrac{-25}{5}=-5\)
(1)&(2)(3)Kết luận \(m< -5\)