K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

Xét phương trình 7x2 + 2(m – 1)x – m2 = 0 (1)

a) Phương trình có nghiệm khi ∆’ ≥ 0

Ta có: ∆’ = (m – 1)2 – 7(-m2) = (m – 1)2 + 7m2 ≥ 0 với mọi m

Vậy phương trình (1) luôn luôn có nghiệm với mọi giá trị của m

b) Gọi x1, x2 là hai nghiệm của phương trình (1)

Ta có:

\(x^2_1+x^2_2=\left(x_1+x_2\right)^2-2x_1x_2\\ =\left[\dfrac{-2\left(m-1\right)^2}{7}\right]-2\dfrac{\left(-m\right)^2}{7}\\ =\dfrac{4m^2-8m+4}{49}+\dfrac{2m^2}{7}\\ =\dfrac{4m^2-8m+4+14m^2}{49}\\ =\dfrac{18m^2-8m+4}{49}\)

Vậy \(x^2_1+x^2_2=\dfrac{18m^2-8m+4}{49}\).

5 tháng 4 2017

Xét phương trình 7x2 + 2(m – 1)x – m2 = 0 (1)

a) Phương trình có nghiệm khi ∆’ ≥ 0

Ta có: ∆’ = (m – 1)2 – 7(-m2) = (m – 1)2 + 7m2 ≥ 0 với mọi m

Vậy phương trình (1) luôn luôn có nghiệm với mọi giá trị của m

b) Gọi x1, x2 là hai nghiệm của phương trình (1)

Ta có:

x\(\dfrac{1}{2}\)+x\(\dfrac{2}{2}\)=(x1+x2)2−2x1x2

=[\(\dfrac{-2\left(m-1\right)^2}{7}\)]-2\(\dfrac{\left(-m\right)^2}{7}\)

=\(\dfrac{4m^2-8m+4}{49}\)+\(\dfrac{2m^2}{7}\)

=\(\dfrac{4m^2-8m+4+14m^2}{49}\)

=\(\dfrac{18m^2-8m+4}{49}\)

vậy x\(\dfrac{2}{1}\)+x\(\dfrac{2}{2}\)=\(\dfrac{18m^2-8m+4}{49}\)

hihi

10 tháng 4 2016

phương trình có a = 7 khác 0 => là phương trình bậc 2

vậy phương trình có nghiệm <=> \(\Delta'\ge0\Leftrightarrow\left(m-1\right)^2-7.\left(-m^2\right)\ge0\Leftrightarrow\left(m-1\right)^2+7m^2\ge0\)(thỏa mãn với mọi m)

b) theo vi et ta có

+) x1+x2 = -b/a = 2(m-1)/7

+) x1.x2 = c/a = -m2/7

22 tháng 1 2021

a) Ta có : a = 7 ; b = 2(m-1) ; c = -m2

\(\Rightarrow\Delta'=\left(m-1\right)^2+7m^2\)

Do \(\left(m-1\right)^2\ge0\)mọi m và \(m^2\ge0\)mọi m

\(\Rightarrow\Delta'\ge0\)với mọi giá trị của m

Do đó PT có nghiệm với mọi giá trị của m

b) Gọi 2 nghiệm của PT là x1 ; x2

Theo định lí Vi-ét , ta có : \(\hept{\begin{cases}x_1+x_2=\frac{-2\left(m-1\right)}{7}\\x_1.x_2=\frac{-m^2}{7}\end{cases}}\)

Khi đó : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2.x_1.x_2\)

\(=\left[\frac{-2\left(m-1\right)}{7}\right]^2-2.\frac{-m^2}{7}\)

\(=\frac{4\left(m-1\right)^2}{49}+\frac{2m^2}{7}\)

\(=\frac{4m^2-8m+4+14m^2}{49}\)

\(=\frac{18m^2-8m+4}{49}\)

16 tháng 1 2017

a) Ta có: a = 7, b= 2(m-1),  c   =   -   m 2

Suy ra:  Δ '   =   ( m   -   1 ) 2   +   7 m 2

Do   ( m - 1 ) 2   ≥   0 mọi m và m 2   ≥   0  mọi m

=> ∆’≥ 0 với mọi giá trị của m.

Do đó phương trình có nghiệm với mọi giá trị của m.

b) Gọi hai nghiệm của phương trình là  x 1 ;   x 2 .

Theo định lý Vi-et ta có: Giải bài 62 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó:

Giải bài 62 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

28 tháng 8 2018

Gọi hai nghiệm của phương trình là x1; x2.

Theo định lý Vi-et ta có: Giải bài 62 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó:

Giải bài 62 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

1 tháng 4 2023

\(x^2+2\left(2m-1\right)x+3\left(m^2-1\right)=0\)

\(a,\) Để pt có nghiệm thì \(\Delta\ge0\)

\(\Rightarrow\left[2\left(2m-1\right)\right]^2-4\left[3\left(m^2-1\right)\right]\ge0\)

\(\Rightarrow4\left(4m^2-4m+1\right)-4\left(3m^2-3\right)\ge0\)

\(\Rightarrow16m^2-16m+4-12m^2+12\ge0\)

\(\Rightarrow4m^2-16m+16\ge0\)

\(\Rightarrow\left(2m-4\right)^2\ge0\)

Vậy pt có nghiệm với mọi m.

 

 

 

1 tháng 4 2023

b, Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=-2\left(2m-1\right)\\x_1x_2=3\left(m^2-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-4m+2\\x_1x_2=3m^2-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{-2+x_1+x_2}{4}\\x_1x_2=3\left(\dfrac{-2+x_1+x_2}{4}\right)^2-3\end{matrix}\right.\)

Vậy......

13 tháng 1 2023

`1)` Ptr có: `\Delta=3^2-4.5.(-1)=29 > 0 =>`Ptr có `2` nghiệm phân biệt

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-3/5),(x_1.x_2=c/a=-1/5):}`

Có: `A=(3x_1+2x_2)(3x_2+x_1)`

     `A=9x_1x_2+3x_1 ^2+6x_2 ^2+2x_1x_2`

    `A=8x_1x_2+3(x_1+x_2)^2=8.(-1/5)+3.(-3/5)^2=-13/25`

Vậy `A=-13/25`

____________________________________________________

`2)` Ptr có: `\Delta'=(-1)^2-7.(-3)=22 > 0=>` Ptr có `2` nghiệm pb

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2/7),(x_1.x_2=c/a=-3/7):}`

Có: `M=[7x_1 ^2-2x_1]/3+3/[7x_2 ^2-2x_2]`

     `M=[(7x_1 ^2-2x_1)(7x_2 ^2-2x_2)+9]/[3(7x_2 ^2-2x_2)]`

    `M=[49(x_1x_2)^2-14x_1 ^2 x_2-14x_1 x_2 ^2+4x_1x_2+9]/[3(7x_2 ^2-2x_2)]`

   `M=[49.(-3/7)^2-14.(-3/7)(2/7)+4.(-3/7)+9]/[3x_2(7x_2-2)]`

   `M=6/[x_2(7x_2-2)]`   `(1)`

Có: `x_1+x_2=2/7=>x_1=2/7-x_2`

 Thay vào `x_1.x_2=-3/7 =>(2/7-x_2)x_2=-3/7`

      `<=>-x_2 ^2+2/7 x_2+3/7=0<=>x_2=[1+-\sqrt{22}]/7`

`@x_2=[1+\sqrt{22}]/7=>M=6/[[1+\sqrt{22}]/7(7 .[1+\sqrt{22}]/2-2)]=2`

`@x_2=[1-\sqrt{22}]/7=>M=6/[[1-\sqrt{22}]/7(7 .[1-\sqrt{22}]/2-2)]=2`

Vậy `M=2`

11 tháng 11 2018

a) Xét: x2 - 4mx + 9.(m – 1)2 = 0 (1)

Δ’ = (2.m)2 – 9.(m – 1)2 = 4m2 – 9.(m2 – 2m + 1) = -5m2 + 18m – 9

Phương trình (1) có nghiệm ⇔ Δ’ ≥ 0

⇔ -5m2 + 18m – 9 ≥ 0

⇔ 5m2 - 18m + 9 ≤ 0

⇔ (5m – 3)(m – 3) ≤ 0

⇔ 3/5 ≤ m ≤ 3.

b) + x1 ; x2 là hai nghiệm của (1) nên theo định lý Vi-et ta có:

Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10

+ Tìm hệ thức giữa x1 và x2 không phụ thuộc vào m.

Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Thử lại:

+ m = 1, (1) trở thành x2 – 4x = 0 có hai nghiệm x = 0; x = 4 có hiệu bằng 4

+ m = 13/5, (1) trở thành Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10 có hai nghiệm x = 7,2 và x = 3,2 có hiệu bằng 4.

Vậy m = 1 hoặc m = 13/5.

24 tháng 8 2018

Theo hệ thức Vi-ét ta có:  x 1 x 2  =5/3

Suy ra: 1/3 . x 2  = 5/3 ⇔  x 2  =5/3 : 1/3 =5/3 .3=5

cũng theo hệ thức Vi-ét ta có:  x 1  +  x 2  =[2(m -3)]/3

Suy ra: 1/3 +5 = [2(m -3)]/3 ⇔ 2(m -3) =16 ⇔ m-3=8 ⇔ m=11

Vậy với m = 11 thì phương trình 3 x 2  -2(m -3)x +5 =0 có hai nghiệm  x 1  = 1/3 ,  x 2  = 5

a: Ta có: \(\left(m-1\right)x^2-2x-m+1=0\)

a=m-1; b=-2; c=-m+1

\(ac=\left(m-1\right)\left(-m+1\right)=-\left(m-1\right)^2< 0\forall m\)

Do đó: Phương trình luôn có hai nghiệm trái dấu

b: \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow\left(\dfrac{2}{m-1}\right)^2-2\cdot\dfrac{-m+1}{m-1}=6\)

\(\Leftrightarrow\dfrac{4}{\left(m-1\right)^2}=4\)

\(\Leftrightarrow\left(m-1\right)^2=1\)

=>m-1=1 hoặc m-1=-1

=>m=2 hoặc m=0