K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

Thay \(x=-3\) vào bất phương trình (1) ta được:
\(3.\left(-3\right)+1< -3+3\)\(\Leftrightarrow-8< 0\) ( đúng)
Vậy \(x=-3\) là nghiệm của bất phương trình (1)
TThay \(x=-3\) vào bất phương trình (2) ta được:
\(\left(3.\left(-3\right)+1\right)^2< \left(-3+3\right)^2\)\(\Leftrightarrow64< 0\) (vô lý).
Vậy \(x=-3\) là nghiệm của bất phương trình (2).
Vậy hai bất phương trình (1) và (2) không tương đương và bình phương hai vế của bất phương trình không là phép biến đổi tương đương.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Đáp án A: \(x + y > 3\) là bất phương trình bậc nhất hai ẩn x và y có a=1, b=1, c=3

Đáp án B: \({x^2} + {y^2} \le 4\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)

Đáp án C: \(\left( {x - y} \right)\left( {3x + y} \right) \ge 1 \Leftrightarrow 3{x^2} - 2xy - {y^2} \ge 1\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)

Đáp án D: \({y^3} - 2 \le 0\) không là bất phương trình bậc nhất hai ẩn vì có \({y^3}\).

Chọn A

11 tháng 9 2021

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Hai bất phương trình bài cho là bất phương trình bậc nhất hai ẩn.

b) (1; 1) là một nghiệm chung của hai BPT (1) và (2) vì:

Thay x=1;y=1 vào (1) ta được: 1-1<3 (Luôn đúng)

Thay x=1; y=1 vào (2) ta được: 1+2.1>-2 (Luôn đúng)

1: \(\Leftrightarrow\left[{}\begin{matrix}2x-3>5\\2x-3< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

2: \(\Leftrightarrow-4< =2x-1< =4\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1>=-4\\2x-1< =4\end{matrix}\right.\Leftrightarrow\dfrac{-3}{2}< =x< =\dfrac{5}{2}\)

31 tháng 3 2022

bạn tải ảnh về r up lại đi bạn

31 tháng 3 2022

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)

\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)

\(\Leftrightarrow-28x+37\ge12\)

\(\Leftrightarrow-28x\ge12-37\)

\(\Leftrightarrow-28x\ge-25\)

\(\Leftrightarrow x\le\dfrac{25}{28}\)

Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)

b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)

\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)

\(\Leftrightarrow-6x\ge30\)

\(\Leftrightarrow x\le-5\)

Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)

\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)

\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)

\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)

\(\Leftrightarrow-11x+37< 0\)

\(\Leftrightarrow-11x< -37\)

\(\Leftrightarrow x>\dfrac{37}{11}\)

vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)

29 tháng 8 2021

1) \(2\left(x+3\right)>5\left(x-1\right)+2\Leftrightarrow2x+6>5x-5+2\Leftrightarrow3x>9\Leftrightarrow x>3\)

2) \(x^2-x\left(x+2\right)>3x-10\)

\(\Leftrightarrow x^2-x^2-2x>3x-10\Leftrightarrow5x< 10\Leftrightarrow x< 2\)

3) \(x\left(x-5\right)< \left(x+1\right)^2\)

\(\Leftrightarrow x^2-5x< x^2+2x+1\Leftrightarrow7x>-1\Leftrightarrow x>-\dfrac{1}{7}\)

4) \(15-2\left(x-7\right)< 2\left(x-3\right)-6\)

\(\Leftrightarrow15-2x+14< 2x-6-6\Leftrightarrow4x>41\Leftrightarrow x>\dfrac{41}{4}\)

1: Ta có: \(2\left(x+3\right)>5\left(x-1\right)+2\)

\(\Leftrightarrow2x+6>5x-5+2\)

\(\Leftrightarrow-3x>-9\)

hay x<3

2: Ta có: \(x^2-x\left(x+2\right)>3x-10\)

\(\Leftrightarrow x^2-x^2-2x>3x-10\)

\(\Leftrightarrow-5x>-10\)

hay x<2

3: Ta có: \(x\left(x-5\right)\le\left(x+1\right)^2\)

\(\Leftrightarrow x^2-5x-x^2-2x-1\ge0\)

\(\Leftrightarrow-7x\ge1\)

hay \(x\le-\dfrac{1}{7}\)

4: =>2x-3>5 hoặc 2x-3<-5

=>x>4 hoặc x<-1

5: =>-4<=2x-1<=4

=>-3/2<=x<=5/2

a: =>2x^2+8x-3x-12<2x^2+2

=>5x<14

=>x<14/5

b: =>\(\dfrac{9x-3-\left(5x+1\right)\left(x-2\right)}{3\left(x-2\right)}-4>0\)

=>\(\dfrac{9x-3-5x^2+10x-x+2-12\left(x-2\right)}{3\left(x-2\right)}>0\)

=>\(\dfrac{-5x^2+18x-1-12x+24}{3\left(x-2\right)}>0\)

=>\(\dfrac{-5x^2+6x+23}{x-2}>0\)

TH1: x-2>0 và -5x^2+6x+23>0

=>x>2 và \(\dfrac{3-2\sqrt{31}}{5}< x< \dfrac{3+2\sqrt{31}}{5}\)

=>\(2< x< \dfrac{3+2\sqrt{31}}{5}\)

TH2: x-2<0 và -5x^2+6x+23<0

=>x<2 và \(\left[{}\begin{matrix}x< \dfrac{3-2\sqrt{31}}{5}\\x>\dfrac{3+2\sqrt{31}}{5}\end{matrix}\right.\)

=>\(x< \dfrac{3-2\sqrt{31}}{5}\)