Tính A= 1-5+52-53+54-55+.....+598-599
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)
\(b,S6=1-5^{100}\\ 1-S6=5^{100}\)
=> 5100 chia 6 du 1
Bài 1:
1) \(9A=3^3+3^5+...+3^{113}\)
\(\Rightarrow8A=9A-A=3^3+3^5+...+3^{113}-3-3^3-...-3^{111}=3^{113}-3\)
\(\Rightarrow A=\dfrac{3^{113}-3}{8}\)
2) \(9B=3^4+3^6+...+3^{202}\)
\(\Rightarrow8B=9B-B=3^4+3^6+...+3^{202}-3^2-3^4-...-3^{200}=3^{202}-3^2=3^{202}-9\)
\(\Rightarrow B=\dfrac{3^{202}-9}{8}\)
3) \(25C=5^3+5^5+...+5^{101}\)
\(\Rightarrow24C=25C-C=5^3+5^5+...+5^{101}-5-5^3-...-5^{99}=5^{101}-5\)
\(\Rightarrow C=\dfrac{5^{101}-5}{24}\)
4) \(25D=5^4+5^6+...+5^{102}\)
\(\Rightarrow24D=25D-D=5^4+5^6+...+5^{102}-5^2-5^4-...-5^{100}=5^{102}-25\)
\(\Rightarrow D=\dfrac{5^{102}-25}{24}\)
Bài 2:
a) Gọi d là UCLN(2n+1,n+1)
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\n+1⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\Rightarrow1⋮d\)
Vậy 2n+1 và n+1 là 2 số nguyên tố cùng nhau
\(\Rightarrow\dfrac{2n+1}{n+1}\) là phân số tối giản
b) Gọi d là UCLN(2n+3,3n+4)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Rightarrow1⋮d\)
\(\Rightarrow\dfrac{2n+3}{3n+4}\) là phân số tối giản
a, Ta có :
A = 1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100
2A = 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101
A = 2A – A = ( 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101 ) –( 1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 )
= 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101 – 1 - 2 - 2 2 - 2 3 - 2 4 - . . . - 2 99 - 2 100
= 2 101 - 1
Vậy A = 2 101 - 1
b, Ta có.
B = 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99
5 2 B = 5 2 ( 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 )
25B = 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101
25B – B = ( 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101 ) – ( 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 )
24B = 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101 – 5 - 5 3 - 5 5 - . . . - 5 97 - 5 99
24B = 5 101 - 5
B = 5 101 - 5 24 = 5 5 100 - 1 24
Vậy B = 5 5 100 - 1 24
Bài 1:
a: \(S=1-5+5^2-5^3+...+5^{98}-5^{99}\)
=>\(5S=5-5^2+5^3-5^4+...+5^{99}-5^{100}\)
=>\(6S=5-5^2+5^3-5^4+...+5^{99}-5^{100}+1-5+5^2-5^3+...+5^{98}-5^{99}\)
=>\(6S=-5^{100}+1\)
=>\(S=\dfrac{-5^{100}+1}{6}\)
b: S=1-5+52-53+...+598-599 là số nguyên
=>\(\dfrac{-5^{100}+1}{6}\in Z\)
=>\(-5^{100}+1⋮6\)
=>\(5^{100}-1⋮6\)
=>\(5^{100}\) chia 6 dư 1
S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰¹²
= (5 + 5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷ + 5⁸) + ... + (5²⁰⁰⁹ + 5²⁰¹⁰ + 5²⁰¹¹ + 5²⁰¹²)
= 780 + 5⁴.(5 + 5² + 5³ + 5⁴) + ... + 5²⁰⁰⁸.(5 + 5² + 5³ + 5⁴)
= 780 + 5⁴.780 + ... + 5²⁰⁰⁸.780
= 65.12 + 5⁴.65.12 + ... + 5²⁰⁰⁸.65.12
= 65.12(1 + 5⁴ + ... + 5²⁰⁰⁸) ⋮ 65
Vậy S ⋮ 65
a, A = 1 + 5 3 + 5 5 + 5 7 + . . . + 5 99
B = 5 4 + 5 6 + 5 8 + . . . + 5 100 = 5 . ( 5 3 + 5 5 + 5 7 + . . . + 5 99 ) = 5(A – 1)
A + B – 1 = 5 3 + 5 4 + . . . + 5 100
5(A + B – 1) = 5 4 + 5 5 + . . . + 5 100 + 5 101
4(A + B – 1) = 5(A + B – 1) – (A + B – 1) = 5 101 - 5 3
=> A + B – 1 = 5 101 - 5 3 4
=> A + 5(A – 1) –1 = 5 101 - 5 3 4 => 6A – 6 = 5 101 - 5 3 4
=> A – 1 = 5 101 - 5 3 24
=> A = 5 101 - 5 3 + 24 24
b, A = 1 - 2 + 2 2 - . . . - 2 2007
A = 1 + 2 2 + . . . + 2 2006 - 2 + 2 3 + . . . + 2 2007
A = ( 1 + 2 2 + . . . + 2 2006 ) - 2 . 1 + 2 2 + . . . + 2 2006
A = - 1 + 2 2 + . . . + 2 2006
Đặt B = - 2 + 2 3 + . . . + 2 2007 = - 2 . 1 + 2 2 + . . . + 2 2006 = 2A
A + B = - 1 + 2 + 2 2 + . . . + 2 2006 + 2 2007
2(A+B) = - 2 + 2 2 + . . . + 2 2006 + 2 2007 + 2 2008
A+B = 2(A+B)–(A+B) = - 2 2008 - 1
=> A+2A = - 2 2008 - 1
=> 3A = - 2 2008 - 1
=> A = - ( 2 2008 - 1 ) 3
c, A = 7 + 7 3 + 7 5 + 7 7 + . . . + 7 1999
Đặt B = 7 2 + 7 4 + 7 6 + . . . + 7 1999 + 7 2000 = 7 ( 7 + 7 3 + 7 5 + 7 7 + . . . + 7 1999 ) = 7A
A+B = 7 + 7 2 + 7 3 + . . . + 7 1999 + 7 2000
7(A+B) = 7 2 + 7 3 + . . . + 7 1999 + 7 2000 + 7 2001
7(A+B) – (A+B) = ( 7 2 + 7 3 + . . . + 7 1999 + 7 2000 + 7 2001 ) – ( 7 + 7 2 + 7 3 + . . . + 7 1999 + 7 2000 )
6(A+B) = 7 2001 - 7
A+B = 7 2001 - 7 6
=> A + 7A = 7 2001 - 7 6 => 8A = 7 2001 - 7 6 => A = 7 2001 - 7 48
Ta có: \(5A=5-5^2+5^3-5^4+...+5^{99}-5^{100}\)
\(\Rightarrow5A+A=6A=1-5^{100}\)
\(\Rightarrow A=\dfrac{1-5^{100}}{6}\)
Mk làm hơi tắt một chút!!! Bn thông cảm nhé!
hơi tắt một chút nhưng mk chỉ suy luận câu câu trả lời của bạn một tí rồi cũng ra mà.
Cảm ơn bạn nhé