Cho tam giác ABC có các đường cao BH và CK cắt nhau tại I.
Chứng minh A K I H cùng nằm trên một đường tròn. Xác định tâm đường tròn đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có tam giác AKI vuông tại K nên AKI nằm trên đường tròn đường kinh AI
tam giác AHI vuông tại H nên AHI nằm trên đường tròn đường kinh AI
Nên AKIH nằm trên đường tròn đường kinh AI, tâm là trung điểm của AI
a: Xét tứ giác BKHC có
\(\widehat{BKC}=\widehat{BHC}=90^0\)
Do đó: BHKC là tứ giác nội tiếp
b: Xét (BC/2) có
BC là đường kính
KH là dây
Do đó: KH<BC
Sửa đề: Đường cao BD
a: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}\left(=90^0\right)\)
Do đó: BEDC là tứ giác nội tiếp
hay B,E,D,C cùng thuộc 1 đường tròn
b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{A}\) chung
Do đó: ΔADB\(\sim\)ΔAEC
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
hay \(AD\cdot AC=AE\cdot AB\)
a: Xét tứ giác AHIK có
\(\widehat{AHI}+\widehat{AKI}=90^0+90^0=180^0\)
=>AHIK là tứ giác nội tiếp
=>A,H,I,K cùng thuộc một đường tròn
b: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó ΔACD vuông tại C
=>AC\(\perp\)CD
Ta có: BH\(\perp\)AC
AC\(\perp\)CD
Do đó:BH//CD
c: Ta có: BH//CD
I\(\in\)BH
Do đó: BI//CD
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó; ΔABD vuông tại B
Ta có:BD\(\perp\)BA
CI\(\perp\)BA
Do đó:BD//CI
Xét tứ giác BICD có
BI//CD
BD//CI
Do đó: BICD là hình bình hành
đề phải là A;D;C;E chứ bạn ? xem lại nhé
a, Gọi I là trung điểm AC
Xét tam giác CEA vuông tại E, I là trung điểm
=> \(IE=\frac{1}{2}AC=AI=IC\)(*)
Xét tam giác ADC vuông tại D, I là trung điểm
=> \(DI=\frac{1}{2}AC=AI=IC\)(**)
Từ (*) ; (**) suy ra A;D;C;E cùng thuộc (I;AC/2)
a: Xét tứ giác BKHC có
\(\widehat{BKC}=\widehat{BHC}\left(=90^0\right)\)
Do đó: BHKC là tứ giác nội tiếp
hay B,H,K,C cùng nằm trên một đường tròn
Tâm là trung điểm của BC
EM thử nha, sai thì chịu!
Gọi M là trung điểm BC. Khi đó BM = \(\frac{1}{2}BC\)(1) và CM = \(\frac{1}{2}BC\)(2)
Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền nên:
+)Tam giác KCB có trung tuyến \(KM=\frac{1}{2}BC\) (3)
Tương tự \(HM=\frac{1}{2}BC\)(4)
Từ (1), (2), (3) và (4) ta có B, K, H, C luôn cách M một khoảng không đổi và bằng \(\frac{1}{2}BC\) nên B, K, H, C cùng thuộc đường trong tâm M, bán kính \(\frac{1}{2}BC\). vậy ta có đpcm.
Hình sẽ đăng sau.
a: Xét tứ giác BFEC có
\(\widehat{BEC}=\widehat{BFC}=90^0\)
Do đó: BFEC là tứ giác nội tiếp
hay B,F,E,C cùng thuộc 1 đường tròn
b: Xét tứ giác ANHM có
\(\widehat{ANH}+\widehat{AMH}=180^0\)
Do đó: ANHM là tứ giác nội tiếp
hay A,N,H,M cùng thuộc 1 đường tròn
Xét tứ giác AKIH có
\(\widehat{AKI}+\widehat{AHI}=180^0\)
nên AKIH là tứ giác nội tiếp
hay A,K,I,H cùng thuộc 1 đường tròn
Tâm là trung điểm của AI