K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2015

ở đây ko có lớp 10 đâu.

25 tháng 9 2015

Bổ đề: Nếu tam giác ABC có tâm đường tròn ngoại tiếp O và trực tâm H thì \(\vec{OH}=\vec{OA}+\vec{OB}+\vec{OC}\).   

Chứng minh: Xét hiệu \(\vec{s}=\vec{OA}+\vec{OB}+\vec{OC}-\vec{OH}=\left(\vec{OA}+\vec{OB}\right)+\vec{HA}\),  có phương vuông góc với BC, tương tư vector s có phương vuông góc với CA. vậy vector s vuông góc với hai phương khác nhau nên là vector không.

Bằng cách tính góc, ta có \(IA_1\perp B_1C_1,IB_1\perp A_1C_1\to\)  I chính là trực tâm tam giác A1B1C1. Từ đó áp dụng bổ đề 1, cho ta ngay a)

b)  Ta có  \(\vec{OA_1}=\frac{R}{r}\vec{IA_2},\vec{OB_1}=\frac{R}{r}\vec{IB_2},\vec{OC_1}=\frac{R}{r}\vec{IC_2}\to\vec{OA_1}+\vec{OB_1}+\vec{OC_1}\)

\(=\frac{R}{r}\left(\vec{IA_2}+\vec{IB_2}+\vec{IC_2}\right)=3\frac{R}{r}\vec{IG'}\)  trong đó G' là trọng tâm tam giác A2B2C2. Theo câu a, ta suy ra véc tơ OI bằng 3R/r lần véc tơ IG', do đó điểm O nằm trên đường thẳng IG'. Vì I là tâm đường tròn ngoại tiếp tam giác A2B2C2 và G' là trọng tâm nên IG' chính là đường thẳng Ơ-le của tam giác A2B2C2. Suy ra OI chính là đường thẳng Ơ le của tam giác A2B2C2

 

 

22 tháng 11 2023

loading...  loading...  loading...      loading...  loading...  loading...  

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0